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Part I

Spotting multiple operator integrals in nature

TD
f [n] (V1, . . . ,Vn)



Part I.a:
MOIs in Connes’ approach to particle physics



Noncommutative geometry

Definition

A spectral triple (A,H,D) consists of a *-algebra A ⊆ B(H) and a
self-adjoint operator D, acting in the Hilbert space H, such that (D − i)−1 is
compact and such that [D, a] extends to a bounded operator for all a ∈ A.

Example: spectral triple associated to M = S1

Algebra: A := C∞(S1)

Hilbert space: H := L2(S1) with basis {ψk}k∈Z, ψk(θ) = e ikθ.
A×H → H, (a · ψ)(θ) := a(θ)ψ(θ).
Operator: D := −i d

dθ
, Dψk = kψk

[D, a]ψ = D(a · ψ)− a · D(ψ) = (−i) d
dθ

(a · ψ)− (−i)a d
dθ
ψ = (−i) da

dθ
ψ

[D, a] = −i da
dθ
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Connes’ Reconstruction theorem: If A is commutative (and 8 technical
properties hold) then (A,H,D) must be of the form

(C∞(M), L2(E),DM) ,

for a Riemannian manifold M, a spinor bundle E → M, and DM the Dirac
operator in L2(E).



The spectral action:

Tr(f (D)), for a suitable function f : R→ R and a self-adjoint operator D
whose spectrum encodes ‘the physics’.

Any countably additive way to obtain a number from this spectrum is of
the form Tr(f (D)).



Two ways to expand the spectral action Tr(f (D+V
Λ

)):

1. Expand Tr(f (D+V
Λ

)) in Λ

Tr(f (
DM×F + V

Λ
)) =c0Λ4vol(M) + c1Λ2

ˆ
R
√
gdx + c2

ˆ
trFµνF

µν

− c3

ˆ
|φ|2 + c4

ˆ
|φ|4 + · · ·

Spectral triple→Physical effective
action, RG flow → measurable data.
But: noncommutativity is ignored in
intermediate step.

Renormalization Group flow

cf. [van Suijlekom, Chamseddine, Connes, JHEP]

2. Expand Tr(f (D+V
Λ

)) in Λ−1V

Taylor: Tr(f (D+V
Λ

)) =
∑∞

n=0
Λ−n

n!
Tr(T

D/Λ,...,D/Λ

f [n] (V , . . . ,V ))



Part I.b:
MOIs in the wild noncommutative literature



One may spot MOIs throughout the noncommutative literature.

e.g.
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One comes accross expressions roughly like

n

2πi

˛
γ

f ′(z)(z − D)−1V1(z − D)−1 · · ·Vn(z − D)−1 dz ,

or

ˆ
R

ˆ
∆n

f̂ (n)(t)e its0DV1e
its1D · · ·Vne

itsnDds dt,

or

m∑
i0,...,in=1

f [n](λi0 , . . . , λin )(V1)i0 i1 · · · (Vn)in−1 inEi0 in

Spoiler alert: they are all the same.
=: TD,...,D

f [n] (V1, . . . ,Vn).
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Let H0, . . . ,Hn be self-adjoint in H.
Suppose φ : Rn+1 → R is measurable and can be written as

φ(λ0, . . . , λn) =

ˆ
Σ

α0(λ0, σ) · · ·αn(λn, σ)dσ

for a finite measure space (Σ, σ), and bounded measurable αj : Σ× R→ R.
We define [Peller 2006] the multiple operator integral

TH0,...,Hn
φ (V1, . . . ,Vn)ψ :=

ˆ
Σ

α0(H0, σ)V1α1(H1, σ) · · ·Vnαn(Hn, σ)ψ dσ.

This defines a well-defined multilinear operator

TD
φ : B(H)× · · · × B(H)→ B(H) .

One often sees φ = f [n]. If f̂ (n) ∈ L1 then φ = f [n] splits as above. (Because

of .)
Credit n = 1: Daletskii, Krein, Löwner, Krein, Birman, Solomyak
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Let H0, . . . ,Hn be self-adjoint in H.
Suppose φ : Rn+1 → R is measurable and can be written as

φ(λ0, . . . , λn) =

ˆ
Σ

α0(λ0, σ) · · ·αn(λn, σ)dσ

for a finite measure space (Σ, σ), and bounded measurable αj : Σ× R→ R.
We define [Peller 2006] the multiple operator integral

TH0,...,Hn
φ (V1, . . . ,Vn)ψ :=

ˆ
Σ

α0(H0, σ)V1α1(H1, σ) · · ·Vnαn(Hn, σ)ψ dσ.

This defines a well-defined multilinear operator

TD
φ : B(H)× · · · × B(H)→ B(H) .

One often sees φ = f [n]. If f̂ (n) ∈ L1 then φ = f [n] splits as above. (Because

of .)
Credit n = 1: Daletskii, Krein, Löwner, Krein, Birman, Solomyak



For the analysts, MOIs are nice because they lead to sharp bounds:

I ‖f (D + V )− f (D)‖p 6 cp‖f ‖Lip‖V ‖p [Potatov,Sukochev]

I ‖[f (D),V ]‖p 6 Cp‖f ‖Lip‖[D,V ]‖p, Cp ∼ p2

p−1

[Caspers,Montgomery-Smith,Potapov,Sukochev]

I ‖ dn

dtn
f (D + tV )|t=0‖p 6 cp‖f (n)‖∞‖V ‖np[Potatov,Sukochev,Skripka]

where p ∈ (1,∞).
Direct applications are spectral shift functions, but also the sharpness of
the above results is quite helpful.



In the Journal of Soviet Mathematics, 1993:

In MOI notation:

1. f (A)− f (B) = TA,B

f [1] (A− B)

2. [f (H), a] = TH,H

f [1] ([H, a])

Here, f [1](µ, λ) = f (µ)−f (λ)
µ−λ .
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Adding the 0th order f (H) = TH
f [0] () one realises the two relations relate

MOIs of 0th order to MOIs of 1st order.
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Theorem ()

For all N ∈ N: f (H + V ) =
∑N

n=0 T
H,...,H

f [n] (V , . . . ,V ) + TH+V ,H,...,H

f [N+1] (V , . . . ,V )

Proof.

Induction basis (N = 0):

f (H + V )
(1)
= f (H) + TH+V ,H

f [1] (V )

(0)
= TH

f [0] () + TH+V ,H

f [1] (V ).

Induction step:

f (H + V )
(IH)
=

N∑
n=0

TH,...,H

f [n] (V , . . . ,V ) + TH+V ,H,...,H

f [N+1] (V , . . . ,V )

=
N+1∑
n=0

TH,...,H

f [n] (V , . . . ,V ) + TH+V ,H,...,H

f [N+1] (V , . . . ,V )

− TH,H,...,H

f [N+1] (V , . . . ,V )

(1)
=

N+1∑
n=0

TH,...,H

f [n] (V , . . . ,V ) + TH+V ,H,...,H

f [N+2] (V , . . . ,V )



Theorem (humanity)
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Hence, it follows from just 0 and 1 that

Tr(f (D + tV )) ∼
∞∑
n=1

tn Tr(TD
f [n] (V , . . . ,V )).

Similarly, it follows from 1 and 2 and cyclicity that the functionals

φn(a0, . . . , an) = Tr(a0[D, a1]TD
f ′[n] ([D, a1], . . . , [D, an]))

are (b,B)-cocycles for even n.

Adding some very general summability assumptions, one finds
dn

dtn
f (D + tV )|t=0 = TD

f [n] (V , . . . ,V ), convergence of the Taylor series, and
entire cyclic cocycles that recover the spectral action:

Tr(f (D + V )− f (D)) =
∑∞

k=1

(
ck
´
ψ2k−1

cs2k−1(A) + 1
2k

´
φ2k

F k
)
. [van

Suijlekom-vN,2021]
Connes asked what happens to φn if D 7→ D

Λ
and Λ→∞.. “not obvious at

all”
Indeed, an answer requires unbounded multiple operator integrals!
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Another reason for unbounded MOIs

From [vN-Sukochev-Zanin,2023]:

and later on:



Part II

�e a�tract Ψdifferential calculus of Connes and M�covici



Part II

�e a�tract Ψdifferential calculus of Connes and M�covici



Part II

�e a�tract Ψdifferential calculus of Connes and M�covici



Part II

�e a�tract Ψdifferential calculus of Connes and M�covici



Part II

�e a�tract Ψdifferential calculus of Connes and M�covici



The pseudodifferential calculus:

Let Θ be a positive invertible operator in H. (Think of
√

1 + D2.)

I Define the Hilbert spaces

Hs := domΘs
‖·‖s

, 〈φ, ψ〉Hs := 〈Θsφ,Θsψ〉

for s ∈ R where ‖φ‖Hs := ‖Θsφ‖ – though taking this closure is not
necessary for s > 0. We write H∞ =

⋂
s>0H

s , which is dense in H.

I We say that a linear operator A : H∞ → H∞ is in the class

opr = opr (Θ)

if A extends to a continuous operator

A
s,r

: Hs+r → Hs

for all s ∈ R. (If no confusion can arise, we write A : Hs+r → Hs .)

I We write op :=
⋃

r∈R opr and op−∞ :=
⋂

r∈R opr .

I We define Ψr ⊆ opr as those A ∈ opr for which δnΘ(A) ∈ opr for each
n > 0, where δΘ(A) := [Θ,A].
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Hs := domΘs
‖·‖s

, 〈φ, ψ〉Hs := 〈Θsφ,Θsψ〉

for s ∈ R where ‖φ‖Hs := ‖Θsφ‖ – though taking this closure is not
necessary for s > 0. We write H∞ =

⋂
s>0H

s , which is dense in H.

I We say that a linear operator A : H∞ → H∞ is in the class

opr = opr (Θ)

if A extends to a continuous operator

A
s,r

: Hs+r → Hs

for all s ∈ R. (If no confusion can arise, we write A : Hs+r → Hs .)

I We write op :=
⋃

r∈R opr and op−∞ :=
⋂

r∈R opr .

I We define Ψr ⊆ opr as those A ∈ opr for which δnΘ(A) ∈ opr for each
n > 0, where δΘ(A) := [Θ,A].



Theorem

Let n ∈ N, let H0, . . .Hn be self-adjoint operators in H, and let φ : Rn+1 → C
be of the form

φ(λ0, . . . , λn) =

ˆ
Ω

a0(λ0, ω) · · · an(λn, ω)dν(ω),

for a finite measure space (Ω, ν) and bounded measurable aj : R× Ω→ C.
Suppose that we have aj(Hj , ω) ∈ op0(Θ) and

‖aj(Hj , ω)‖Hs→Hs 6 Cs,Hj ‖aj(·, ω)‖∞

for every 0 6 j 6 n, s ∈ R, and ω ∈ Ω, and certain constants Cs,Hj ∈ R.
Then the integral

TH0,...,Hn
φ (V1, . . . ,Vn)ψ :=

ˆ
Ω

a0(H0, ω)V1a1(H1, ω) · · ·Vnan(Hn, ω)ψ dν(ω),

for V1, . . . ,Vn ∈ op, ψ ∈ H∞, converges as a Bochner integral in Hs for
every s ∈ R. This defines a well-defined map

TH0,...,Hn
φ : op× · · · × op→ op .

If Θ = 1, we get the usual MOI of [Peller, 2006]. If Θ =
√

1 + ∆ on L2(Rd),
then Hs = W s

2 (Rd). For a spectral triple, take Θ =
√

1 + D2.
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The main application:

An elliptic operator of order r ∈ R is an operator H ∈ opr (Θ) for which
there exists a parametrix P ∈ op−r (Θ) such that

HP = 1H∞ + R1;

PH = 1H∞ + R2,

where R1,R2 ∈ op−∞ .
We call f ∈ C∞(R) (or R+) of order β ∈ R if

(
√

1 + x2)k−β+εf (k)(x)

is bounded for all k ∈ N.
If f is of order β, if H0, . . . ,Hn are symmetric and elliptic of order h > 0,
and if Vj ∈ oprj , then we obtain

TH0,...,Hn

f [n] (V1, . . . ,Vn) ∈ op(β−n)h+
∑

rj .

E.g., if f (x) = e−x , the MOI is a smoothing operator...



Some notes on elliptic operators:

Proposition

Let H ∈ opr be an elliptic operator. If x ∈ H−∞ is such that Hx ∈ Hs for an
s ∈ R, then x ∈ Hs+r .

Proposition

Let H ∈ opr , r > 0, be an elliptic and symmetric operator. Then H is
self-adjoint with domain Hr .

Theorem

Let H ∈ opr , r > 0, be elliptic and symmetric, and let E denote its spectral
measure. If f ∈ Lβ∞(E), β ∈ R, then f (H) ∈ opβr with

‖f (H)‖Hs+βr→Hs 6 Cs,H‖f ‖Lβ∞(E)
.



Theorem (Expansion of MOIs)

Let f be of order β, H symmetric and elliptic of order h > 0, and Vi ∈ opri .
If δnH(Vi ) ∈ opn(h−ε)+ri for all n ∈ N, then we have

TH,...,H

f [n] (V1, . . . ,Vn) ∼
∞∑
m=0

∑
m1+...+mn=m

Cm1,...,mn

(n + m)!
δm1
H (V1) · · · δmn

H (Vn)f (n+m)(H).



Two ways to expand the spectral action Tr(f (D+V
Λ

)):

1. Expand Tr(f (D+V
Λ

)) in Λ

Tr(f (
DM×F + V

Λ
)) =c0Λ4vol(M) + c1Λ2

ˆ
R
√
gdx + c2

ˆ
trFµνF

µν

− c3

ˆ
|φ|2 + c4

ˆ
|φ|4 + · · ·

Spectral triple→Physical effective
action, RG flow → measurable data.
But: noncommutativity is ignored in
intermediate step.

Renormalization Group flow

cf. [van Suijlekom, Chamseddine, Connes, JHEP]

2. Expand Tr(f (D+V
Λ

)) in Λ−1V

Taylor: Tr(f (D+V
Λ

)) =
∑∞

n=0
Λ−n

n!
Tr(T

D/Λ,...,D/Λ

f [n] (V , . . . ,V ))



Theorem (Expansion of MOIs)

Let f be of order β, H symmetric and elliptic of order h > 0, and Vi ∈ opri .
If δnH(Vi ) ∈ opn(h−ε)+ri for all n ∈ N, then we have

TH,...,H

f [n] (V1, . . . ,Vn) ∼
∞∑
m=0

∑
m1+...+mn=m

Cm1,...,mn

(n + m)!
δm1
H (V1) · · · δmn

H (Vn)f (n+m)(H).

Combining this with [f (Θ),V ] = TΘ
f [1] ([Θ,V ]), one obtains formulas from

[Connes-Moscovici,1995] like

[Θα,V ] ∼
∞∑
k=1

(
α
k

)
δkΘ(V )Θα−k

and

[log(Θ),V ] ∼
∞∑
k=1

(−1)k−1

k
δkΘ(V )Θ−k .
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Besides old results, we also obtain a new one: an open question posed by
Iochum a few years ago.

Corollary

Let (A,H,D) be a regular s-summable spectral triple, s > 0. Let V ∈ B be
self-adjoint and bounded, where B is the algebra generated by A and D. If

Tr(Qe−tD2

)

admits an asymptotic expansion as t → 0 for each Q ∈ B, then

Tr(Pe−t(D+V )2

)

admits an asymptotic expansion as t → 0 for each P ∈ B.

Thanks!



Besides old results, we also obtain a new one: an open question posed by
Iochum a few years ago.

Corollary

Let (A,H,D) be a regular s-summable spectral triple, s > 0. Let V ∈ B be
self-adjoint and bounded, where B is the algebra generated by A and D. If

Tr(Qe−tD2

)

admits an asymptotic expansion as t → 0 for each Q ∈ B, then

Tr(Pe−t(D+V )2

)

admits an asymptotic expansion as t → 0 for each P ∈ B.

Thanks!



Appendix

Proposition

Let H ∈ opr (Θ) be such that [Θ,H] ∈ opr . If the extension

H : Hs0+r → Hs0

has a bounded inverse
H−1 : Hs0 → Hs0+r

for one particular s0 ∈ R, then H−1
∣∣
H∞ ∈ op−r . We have

HH−1|H∞ = H−1H|H∞ = 1H∞ . In particular, if H ∈ opr and [Θ,H] ∈ opr

with r > 0, then we have as (unbounded) operators

σ(H : Hs0+r ⊆ Hs0 → Hs0 ) = σ(H : Hs+r ⊆ Hs → Hs)

for all s ∈ R.

Lemma

Let H ∈ op0 be such that [Θ,H] ∈ op0 and H
0,0

: H → H is self-adjoint.
Then for all s ∈ R, there is a constant Cs > 0 such that

‖(z − H)−1‖Hs→Hs 6 Cs
1

|=(z)|

(√
1 + |z |2
|=(z)|

)2|s|−1

, z ∈ C \ R.
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