Multiple operator integrals and the abstract pseudodifferential calculus of Connes and Moscovici

Teun van Nuland

TU Delft

Based on ongoing joint work with Eva-Maria Hekkelman (UNSW) and Edward McDonald (Penn State)

Part I: Spotting multiple operator integrals in nature

Part II: The abstract pseudodifferential calculus of Connes and Moscovici

Part I

Spotting multiple operator integrals in nature

Part I.a:
 MOIs in Connes' approach to particle physics

Noncommutative geometry

Definition

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of a ${ }^{*}$-algebra $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ and a self-adjoint operator D, acting in the Hilbert space \mathcal{H}, such that $(D-i)^{-1}$ is compact and such that $[D, a]$ extends to a bounded operator for all $a \in \mathcal{A}$.

Example: spectral triple associated to $M=S^{1}$
Algebra: $\mathcal{A}:=C^{\infty}\left(S^{1}\right)$

Noncommutative geometry

Definition

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of a ${ }^{*}$-algebra $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ and a self-adjoint operator D, acting in the Hilbert space \mathcal{H}, such that $(D-i)^{-1}$ is compact and such that $[D, a]$ extends to a bounded operator for all $a \in \mathcal{A}$.

Example: spectral triple associated to $M=S^{1}$
Algebra: $\mathcal{A}:=C^{\infty}\left(S^{1}\right)$
Hilbert space: $\mathcal{H}:=L^{2}\left(S^{1}\right)$ with basis $\left\{\psi_{k}\right\}_{k \in \mathbb{Z}}, \psi_{k}(\theta)=e^{i k \theta}$.

Noncommutative geometry

Definition

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of a ${ }^{*}$-algebra $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ and a self-adjoint operator D, acting in the Hilbert space \mathcal{H}, such that $(D-i)^{-1}$ is compact and such that $[D, a]$ extends to a bounded operator for all $a \in \mathcal{A}$.

Example: spectral triple associated to $M=S^{1}$
Algebra: $\mathcal{A}:=C^{\infty}\left(S^{1}\right)$
Hilbert space: $\mathcal{H}:=L^{2}\left(S^{1}\right)$ with basis $\left\{\psi_{k}\right\}_{k \in \mathbb{Z}}, \psi_{k}(\theta)=e^{i k \theta}$.
$\mathcal{A} \times \mathcal{H} \rightarrow \mathcal{H},(a \cdot \psi)(\theta):=a(\theta) \psi(\theta)$.

Noncommutative geometry

Definition

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of a *-algebra $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ and a self-adjoint operator D, acting in the Hilbert space \mathcal{H}, such that $(D-i)^{-1}$ is compact and such that $[D, a]$ extends to a bounded operator for all $a \in \mathcal{A}$.

Example: spectral triple associated to $M=S^{1}$
Algebra: $\mathcal{A}:=C^{\infty}\left(S^{1}\right)$
Hilbert space: $\mathcal{H}:=L^{2}\left(S^{1}\right)$ with basis $\left\{\psi_{k}\right\}_{k \in \mathbb{Z}}, \psi_{k}(\theta)=e^{i k \theta}$.
$\mathcal{A} \times \mathcal{H} \rightarrow \mathcal{H},(a \cdot \psi)(\theta):=a(\theta) \psi(\theta)$.
Operator: $D:=-i \frac{d}{d \theta}$,

Noncommutative geometry

Definition

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of a *-algebra $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ and a self-adjoint operator D, acting in the Hilbert space \mathcal{H}, such that $(D-i)^{-1}$ is compact and such that $[D, a]$ extends to a bounded operator for all $a \in \mathcal{A}$.

Example: spectral triple associated to $M=S^{1}$
Algebra: $\mathcal{A}:=C^{\infty}\left(S^{1}\right)$
Hilbert space: $\mathcal{H}:=L^{2}\left(S^{1}\right)$ with basis $\left\{\psi_{k}\right\}_{k \in \mathbb{Z}}, \psi_{k}(\theta)=e^{i k \theta}$.
$\mathcal{A} \times \mathcal{H} \rightarrow \mathcal{H},(a \cdot \psi)(\theta):=a(\theta) \psi(\theta)$.
Operator: $D:=-i \frac{d}{d \theta}, D \psi_{k}=k \psi_{k}$

Noncommutative geometry

Definition

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of a *-algebra $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ and a self-adjoint operator D, acting in the Hilbert space \mathcal{H}, such that $(D-i)^{-1}$ is compact and such that $[D, a]$ extends to a bounded operator for all $a \in \mathcal{A}$.

Example: spectral triple associated to $M=S^{1}$
Algebra: $\mathcal{A}:=C^{\infty}\left(S^{1}\right)$
Hilbert space: $\mathcal{H}:=L^{2}\left(S^{1}\right)$ with basis $\left\{\psi_{k}\right\}_{k \in \mathbb{Z}}, \psi_{k}(\theta)=e^{i k \theta}$.
$\mathcal{A} \times \mathcal{H} \rightarrow \mathcal{H},(a \cdot \psi)(\theta):=a(\theta) \psi(\theta)$.
Operator: $D:=-i \frac{d}{d \theta}, D \psi_{k}=k \psi_{k}$
$[D, a] \psi=D(a \cdot \psi)-a \cdot D(\psi)=(-i) \frac{d}{d \theta}(a \cdot \psi)-(-i) a \frac{d}{d \theta} \psi=(-i) \frac{d a}{d \theta} \psi$
$[D, a]=-i \frac{d a}{d \theta}$

Connes' Reconstruction theorem: If \mathcal{A} is commutative (and 8 technical properties hold) then $(\mathcal{A}, \mathcal{H}, D)$ must be of the form

$$
\left(C^{\infty}(M), L^{2}(E), D_{M}\right)
$$

for a Riemannian manifold M, a spinor bundle $E \rightarrow M$, and D_{M} the Dirac operator in $L^{2}(E)$.

The spectral action:
$\operatorname{Tr}(f(D))$, for a suitable function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a self-adjoint operator D whose spectrum encodes 'the physics'.

Any countably additive way to obtain a number from this spectrum is of the form $\operatorname{Tr}(f(D))$.

Two ways to expand the spectral action $\operatorname{Tr}\left(f\left(\frac{D+V}{\Lambda}\right)\right)$:

1. Expand $\operatorname{Tr}\left(f\left(\frac{D+V}{\Lambda}\right)\right)$ in Λ

$$
\begin{aligned}
\operatorname{Tr}\left(f\left(\frac{D_{M \times F}+V}{\Lambda}\right)\right)= & c_{0} \Lambda^{4} \operatorname{vol}(M)+c_{1} \Lambda^{2} \int R \sqrt{g} d x+c_{2} \int \operatorname{tr} F_{\mu \nu} F^{\mu \nu} \\
& -c_{3} \int|\phi|^{2}+c_{4} \int|\phi|^{4}+\cdots
\end{aligned}
$$

Spectral triple \rightarrow Physical effective action, RG flow \rightarrow measurable data. But: noncommutativity is ignored in intermediate step.

Renormalization Group flow
2. Expand $\operatorname{Tr}\left(f\left(\frac{D+V}{\Lambda}\right)\right)$ in $\Lambda^{-1} V$ Taylor: $\operatorname{Tr}\left(f\left(\frac{D+V}{\Lambda}\right)\right)=\sum_{n=0}^{\infty} \frac{\Lambda^{-n}}{n!} \operatorname{Tr}\left(T_{f[n]}^{D / \Lambda, \ldots, D / \Lambda}(V, \ldots, V)\right)$

Part I.b:
MOIs in the wild noncommutative literature

One may spot MOIs throughout the noncommutative literature.

[^0]
One may spot MOIs throughout the noncommutative literature.

We use the Chern character of $(\mathcal{A}, \mathcal{H}, D)$ in entire cyclic cohomology (cf. [2] given in the most efficient manner by the JLO formula, which defines the com ponents of an entire cocycle in the (b, B) bicomplex:
(90)

$$
\psi_{n}\left(a^{0}, \ldots, a^{n}\right)=\sqrt{2 i} \int_{\sum_{0}^{n} v_{i}=1, v_{i} \geq 0}
$$

$$
\operatorname{Trace}\left(a^{0} e^{-v_{0} D^{2}}\left[D, a^{1}\right] e^{-v_{1} D^{2}} \ldots e^{-v_{n-1} D^{2}}\left[D, a^{n}\right] e^{-v_{n} D^{2}}\right), \quad \forall a^{j} \in \mathcal{A}
$$

e. $\stackrel{\circ}{8}$.
where n is odd.
1.1. Rearrangement Lemma and multivariable functional calculus. An impor tant technical tool for the calculation of heat coefficients in the noncommutative setting is the Rearrangement Lemma which informally reads

$$
\int_{0}^{\infty} f_{0}\left(u k^{2}\right) \cdot b_{1} \cdot f_{1}\left(u k^{2}\right) \cdot b_{2} \cdot \ldots \cdot b_{p} \cdot f_{p}\left(u k^{2}\right) d u
$$

$$
=k^{-2} F\left(\Delta^{(1)}, \Delta^{(1)} \Delta^{(2)}, \ldots, \Delta^{(1)} \ldots \ldots \cdot \Delta^{(p)}\right)\left(b_{1} \cdot \ldots \cdot b_{p}\right),
$$

where the function $F\left(s_{1}, \ldots, s_{p}\right)$ is

$$
F(s)=\int_{0}^{\infty} f_{0}(u) \cdot f_{1}\left(u s_{1}\right) \cdot \ldots \cdot f_{p}\left(u s_{p}\right) d u
$$

and $\Delta^{(3)}$ signifies that the modular operator $\Delta=k^{-2} \cdot k^{2}$ acts on the j-th factor. In [CoMo14] it is proved for the concrete integral
$\int_{0}^{\infty}\left(u k^{2}\right)^{\mid \alpha \hat{a}+p-1}\left(1+u k^{2}\right)^{-\alpha_{0}-1} \cdot b_{1} \cdot\left(1+u k^{2}\right)^{-\alpha_{1}-1} \cdot \ldots \cdot b_{p} \cdot\left(1+u k^{2}\right)^{-\alpha_{p}-1} d u, \quad(1.5)$

One may spot MOIs throughout the noncommutative literature.

We use the Chern character of $(\mathcal{A}, \mathcal{H}, D)$ in entire cyclic cohomology (cf. [2]) given in the most efficient manner by the JLO formula, which defines the components of an entire cocycle in the (b, B) bicomplex:
(90)

$$
\psi_{n}\left(a^{0}, \ldots, a^{n}\right)=\sqrt{2 i} \int_{\sum_{0}^{n} v_{i}=1, v_{i} \geq 0}
$$

$$
\operatorname{Trace}\left(a^{0} e^{-v_{0} D^{2}}\left[D, a^{1}\right] e^{-v_{1} D^{2}} \ldots e^{-v_{n-1} D^{2}}\left[D, a^{n}\right] e^{-v_{n} D^{2}}\right), \quad \forall a^{j} \in \mathcal{A}
$$

e. O^{-}
where n is odd.
1.1. Rearrangement Lemma and multivariable functional calculus. An impor tant technical tool for the calculation of heat coefficients in the noncommutative setting is the Rearrangement Lemma which informally reads

$$
\int_{0}^{\infty} f_{0}\left(u k^{2}\right) \cdot b_{1} \cdot f_{1}\left(u k^{2}\right) \cdot b_{2} \cdot \ldots \cdot b_{p} \cdot f_{p}\left(u k^{2}\right) d u
$$

$$
=k^{-2} F\left(\Delta^{(1)}, \Delta^{(1)} \Delta^{(2)}, \ldots, \Delta^{(1)} \ldots \ldots \cdot \Delta^{(p)}\right)\left(b_{1} \cdot \ldots \cdot b_{p}\right), \quad(1-4)
$$

$$
\text { where the function } F\left(s_{1}, \ldots, s_{p}\right) \text { is }
$$

$$
F(s)=\int_{0}^{\infty} f_{0}(u) \cdot f_{1}\left(u s_{1}\right) \cdot \ldots \cdot f_{p}\left(u s_{p}\right) d u
$$

and $\Delta^{(3)}$ signifies that the modular operator $\Delta=k^{-2} \cdot k^{2}$ acts on the j-th factor. In [CoMo14] it is proved for the concrete integral
$a n d$

The computation of this matrix-valued function \mathscr{X} is based on the Volterra series

$$
e^{A+B}=e^{A}+\sum_{k=1}^{\infty} \int_{\Delta_{k}} d s e^{\left(1-s_{1}\right) A} B e^{\left(s_{1}-s_{2}\right) A} \cdots e^{\left(s_{k-1}-s_{k}\right) A} B e^{s_{k} A},
$$

where
$\Delta_{k}:=\left\{s=\left(s_{1}, \ldots, s_{k}\right) \in \mathbb{R}_{+}^{k} \mid 0 \leq s_{k} \leq s_{k-1} \leq \cdots \leq s_{2} \leq s_{1} \leq 1\right]$ (we also use

One may spot MOIs throughout the noncommutative literature.

We use the Chern character of $(\mathcal{A}, \mathcal{H}, D)$ in entire cyclic cohomology (cf. [2] given in the most efficient manner by the JLO formula, which defines the components of an entire cocycle in the (b, B) bicomplex:
(90)

$$
\psi_{n}\left(a^{0}, \ldots, a^{n}\right)=\sqrt{2 i} \int_{\sum_{0}^{n} v_{i}=1, v_{i} \geq 0}
$$

$$
\text { Trace }\left(a^{0} e^{-v_{0} D^{2}}\left[D, a^{1}\right] e^{-v_{1} D^{2}} \ldots e^{-v_{n-1} D^{2}}\left[D, a^{n}\right] e^{-v_{n} D^{2}}\right), \quad \forall a^{j} \in \mathcal{A}
$$

e. ${ }^{\circ}$

where n is odd.
1.1. Rearrangement Lemma and multivariable functional calculus. An impor tant technical tool for the calculation of heat coefficients in the noncommutative setting is the Rearrangement Lemma which informally reads

$$
\int_{0}^{\infty} f_{0}\left(u k^{2}\right) \cdot b_{1} \cdot f_{1}\left(u k^{2}\right) \cdot b_{2} \cdot \ldots \cdot b_{p} \cdot f_{p}\left(u k^{2}\right) d u
$$

$$
=k^{-2} F\left(\Delta^{(1)}, \Delta^{(1)} \Delta^{(2)}, \ldots, \Delta^{(1)} \ldots \ldots \cdot \Delta^{(p)}\right)\left(b_{1} \cdot \ldots \cdot b_{p}\right), \quad(1-4)
$$

$$
\text { where the function } F\left(s_{1}, \ldots, s_{p}\right) \text { is }
$$

$$
F(s)=\int_{0}^{\infty} f_{0}(u) \cdot f_{1}\left(u s_{1}\right) \cdot \ldots \cdot f_{p}\left(u s_{p}\right) d u
$$

and $\Delta^{(3)}$ signifies that the modular operator $\Delta=k^{-2} \cdot k^{2}$ acts on the j-th factor. In [CoMo14] it is proved for the concrete integral
$a n d$
$\int_{0}^{\infty}\left(u k^{2}\right)^{\mid \alpha+p-1}\left(1+u k^{2}\right)^{-\alpha_{0}-1} \cdot b_{1} \cdot\left(1+u k^{2}\right)^{-\alpha_{1}-1} \cdot \ldots \cdot b_{p} \cdot\left(1+u k^{2}\right)^{-\alpha_{p}-1} d u,{ }^{(1.5)}$ dnd

The computation of this matrix-valued function \mathscr{X} is based on the Volterra series $e^{A+B}=e^{A}+\sum_{k=1}^{\infty} \int_{\Delta_{k}} d s e^{\left(1-s_{1}\right) A} B e^{\left(s_{1}-s_{2}\right) A} \cdots e^{\left(s_{k-1}-s_{k}\right) A} B e^{s_{k} A}$,
where
$\Delta_{k}:=\left\{s=\left(s_{1}, \ldots, s_{k}\right) \in \mathbb{R}_{+}^{k} \mid 0 \leq s_{k} \leq s_{k-1} \leq \cdots \leq s_{2} \leq s_{1} \leq 1\right\}$ (we also use dnCl

Theorem 4.3 (Odd semifinite local index formula). Let $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ be an odd finitely summable $Q C^{\infty}$ spectrait triple with spectral dimension $q \geq 1$. Let $N=[q / 2]+1$ where H denotes the integer part, and let $u \in \mathcal{A}$ be unitary. Then

1) $\quad \operatorname{index}(Q u Q)=\frac{1}{\sqrt{2 \pi i}} \operatorname{res}_{r-(1-q) / 2}\left(\sum_{m=1, \text { adid }}^{2 N-1} \phi_{\mathrm{m}}^{\prime}\left(C h_{\mathrm{m}}(u)\right)\right)$
where for $a_{0}, \ldots, a_{m} \in \mathcal{A}, l=\{a+$ iv : $v \in \mathbf{R}\}, 0<a<1 / 2, R_{0}(\lambda)=\left(\lambda-\left(1+s^{2}+\mathcal{D}^{2}\right)\right)^{-1}$ and $r>0$ ue define $\phi_{m 0}^{\prime}\left(a_{0}, a_{1}, \ldots, a_{\mathrm{m}}\right)$ to be
$\frac{-2 \sqrt{2 \pi i}}{\Gamma((m+1) / 2)} \int_{0}^{\infty} s^{m} \tau\left(\frac{1}{2 \pi i} \int_{t} \lambda^{-\alpha / 2-r^{r}} a_{0} R_{s}(\lambda)\left[\mathcal{D}, a_{1}\left|R_{s}(\lambda) \cdots\right| \mathcal{D}, a_{m}\right] R_{s}(\lambda) d \lambda\right) d s$
In particular the sum on the right hand side of 1) analytically contimues to a deleted netghtourhood of $r=(1-q) / 2$ with at worst a simple pole at $r=(1-q) / 2$. Moreover, the complex functionmatued coctain $\left(\phi_{m}^{\prime}\right)_{m-1}^{2 m-1}$ is a is b, B) cocgele for \mathcal{A} modulo functions holomoryhic in a half-plane containing $r=(1-q) / 2$.

One comes accross expressions roughly like

or

One comes accross expressions roughly like

or

or

One comes accross expressions roughly like

or

or

One comes accross expressions roughly like

or

or

Spoiler alert:

One comes accross expressions roughly like

or

or

Spoiler alert: they are all the same.
$=: T_{f[n]}^{D, \ldots, D}\left(V_{1}, \ldots, V_{n}\right)$.

Let H_{0}, \ldots, H_{n} be self-adjoint in \mathcal{H}.
Suppose $\phi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ is measurable and can be written as

$$
\phi\left(\lambda_{0}, \ldots, \lambda_{n}\right)=\int_{\Sigma} \alpha_{0}\left(\lambda_{0}, \sigma\right) \cdots \alpha_{n}\left(\lambda_{n}, \sigma\right) d \sigma
$$

for a finite measure space (Σ, σ), and bounded measurable $\alpha_{j}: \Sigma \times \mathbb{R} \rightarrow \mathbb{R}$. We define [Peller 2006] the multiple operator integral

$$
T_{\phi}^{H_{0}, \ldots, H_{n}}\left(V_{1}, \ldots, V_{n}\right) \psi:=\int_{\Sigma} \alpha_{0}\left(H_{0}, \sigma\right) V_{1} \alpha_{1}\left(H_{1}, \sigma\right) \cdots V_{n} \alpha_{n}\left(H_{n}, \sigma\right) \psi d \sigma
$$

Let H_{0}, \ldots, H_{n} be self-adjoint in \mathcal{H}.
Suppose $\phi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ is measurable and can be written as

$$
\phi\left(\lambda_{0}, \ldots, \lambda_{n}\right)=\int_{\Sigma} \alpha_{0}\left(\lambda_{0}, \sigma\right) \cdots \alpha_{n}\left(\lambda_{n}, \sigma\right) d \sigma
$$

for a finite measure space (Σ, σ), and bounded measurable $\alpha_{j}: \Sigma \times \mathbb{R} \rightarrow \mathbb{R}$. We define [Peller 2006] the multiple operator integral

$$
T_{\phi}^{H_{0}, \ldots, H_{n}}\left(V_{1}, \ldots, V_{n}\right) \psi:=\int_{\Sigma} \alpha_{0}\left(H_{0}, \sigma\right) V_{1} \alpha_{1}\left(H_{1}, \sigma\right) \cdots V_{n} \alpha_{n}\left(H_{n}, \sigma\right) \psi d \sigma
$$

This defines a well-defined multilinear operator

$$
T_{\phi}^{D}: \mathcal{B}(\mathcal{H}) \times \cdots \times \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})
$$

Let H_{0}, \ldots, H_{n} be self-adjoint in \mathcal{H}.
Suppose $\phi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ is measurable and can be written as

$$
\phi\left(\lambda_{0}, \ldots, \lambda_{n}\right)=\int_{\Sigma} \alpha_{0}\left(\lambda_{0}, \sigma\right) \cdots \alpha_{n}\left(\lambda_{n}, \sigma\right) d \sigma
$$

for a finite measure space (Σ, σ), and bounded measurable $\alpha_{j}: \Sigma \times \mathbb{R} \rightarrow \mathbb{R}$. We define [Peller 2006] the multiple operator integral

$$
T_{\phi}^{H_{0}, \ldots, H_{n}}\left(V_{1}, \ldots, V_{n}\right) \psi:=\int_{\Sigma} \alpha_{0}\left(H_{0}, \sigma\right) V_{1} \alpha_{1}\left(H_{1}, \sigma\right) \cdots V_{n} \alpha_{n}\left(H_{n}, \sigma\right) \psi d \sigma
$$

This defines a well-defined multilinear operator

$$
T_{\phi}^{D}: \mathcal{B}(\mathcal{H}) \times \cdots \times \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})
$$

One often sees $\phi=f^{[n]}$. If $\widehat{f(n)} \in L^{1}$ then $\phi=f^{[n]}$ splits as above. (Because
of

Credit $n=1$: Daletskii, Krein, Löwner, Krein, Birman, Solomyak

For the analysts, MOIs are nice because they lead to sharp bounds:

- $\|f(D+V)-f(D)\|_{p} \leqslant c_{p}\|f\|_{\text {Lip }}\|V\|_{p}$ [Potatov,Sukochev]
- $\|[f(D), V]\|_{p} \leqslant C_{p}\|f\|_{\text {Lip }}\|[D, V]\|_{p}, C_{p} \sim \frac{p^{2}}{p-1}$ [Caspers,Montgomery-Smith,Potapov,Sukochev]
- $\left\|\left.\frac{d^{n}}{d t^{n}} f(D+t V)\right|_{t=0}\right\|_{p} \leqslant c_{p}\left\|f^{(n)}\right\|_{\infty}\|V\|_{p}^{n}$ [Potatov,Sukochev,Skripka]
where $p \in(1, \infty)$.
Direct applications are spectral shift functions, but also the sharpness of the above results is quite helpful.

In the Journal of Soviet Mathematics, 1993:

OPERATOR INTEGRATION, PERTURBATIONS, AND

COMMUTATORS

M. Sh. Birman and M. Z. Solomyak

Under mild assumption, integral representations of the form

$$
\begin{equation*}
f\left(A_{7}\right) \cdot y-J \cdot f\left(A_{1}\right)=\iint \frac{f(\mu)-f(\lambda)}{\mu-\lambda} d E_{1}(\mu)\left(A_{1} y-J A_{e}\right) d E_{6}(\mu), \tag{}
\end{equation*}
$$

are justified. Here $A_{k}, k=0, I$, is a self-adjoint operator in a Hilbert space. $\boldsymbol{X}_{\boldsymbol{k}}, \boldsymbol{J}$ is an operator from. \boldsymbol{X}_{0} into \mathcal{H}_{1}; in general, all the operators are unbounded; E_{k} is the spectral measure of the operator A_{k}. On the basis of the representation $\left(^{*}\right)$, estimates of the s-numbers of the operator $f\left(A_{1}\right) \cdot \mathcal{J}-\mathcal{J} \cdot f\left(A_{0}\right)$: in terms of the s-numbers of the operator $A_{1} \boldsymbol{J}-\boldsymbol{y} A_{0}$ are given. Analogous results are obtained for commutators and anticommutators.

In the Journal of Soviet Mathematics, 1993:

OPERATOR INTEGRATION, PERTURBATIONS, AND COMMUTATORS

M. Sh. Birman and M. Z. Solomyak

Under mild assumption, integral representations of the form

$$
\begin{equation*}
f\left(A_{1}\right) \cdot J-J \cdot f\left(A_{1}\right)=\iint \frac{f(\mu)-f(\lambda)}{\mu-\lambda} d E_{1}\left(\mu \dot{)}\left(A_{1} y-J A_{2}\right) d E_{6}(\mu),\right. \tag{*}
\end{equation*}
$$

are justified. Here $A_{k}, k=0,1$, is a self-adjoint operator in a Hilbert space. $\boldsymbol{H}_{\boldsymbol{k}}, \mathcal{J}$ is an operator from. \boldsymbol{X}_{0} into \mathcal{H}_{1}; in general, all the operators are unbounded; E_{k} is the spectral measure of the operator A_{k}. On the basis of the representation (*), estimates of the s-numbers of the operator $f\left(A_{4}\right) \cdot \boldsymbol{J}-\boldsymbol{J} \cdot f\left(A_{0}\right)$: in terms of the s-numbers of the operator $A_{1} \boldsymbol{y}-\boldsymbol{y} A_{0}$ are given. Analogous results are obtained for commutators and anticommutators.

In MOI notation:

1. $f(A)-f(B)=T_{f[1]}^{A, B}(A-B)$
2. $[f(H), a]=T_{f[1]}^{H, H}([H, a])$

Here, $f^{[1]}(\mu, \lambda)=\frac{f(\mu)-f(\lambda)}{\mu-\lambda}$.

Adding the 0th order $f(H)=T_{f[0]}^{H}()$ one realises the two relations relate MOIs of 0th order to MOIs of 1st order.

1. $f(A)-f(B)=T_{f^{[1]}}^{A, B}(A-B)$
2. $[f(H), a]=T_{f[1]}^{H, H}([H, a])$

Adding the 0th order $f(H)=T_{f[0]}^{H}()$ one realises the two relations relate MOIs of 0th order to MOIs of 1st order.

1. $f(A)-f(B)=T_{f^{[1]}}^{A, B}(A-B)$
2. $[f(H), a]=T_{f[1]}^{H, H}([H, a])$

Generalise to higher order:
0. $f(H)=T_{f[0]}^{H}()$

1. $T_{f[n]}^{H_{0}, \ldots, A, \ldots, H_{n}}\left(V_{1}, \ldots, V_{n}\right)-T_{f[n]}^{H_{0}, \ldots, B, \ldots, H_{n}}\left(V_{1}, \ldots, V_{n}\right)=$ $T_{f[n+1]}^{H_{0}, \ldots, A, B, \ldots, H_{n}}\left(V_{1}, \ldots, A-B, \ldots, V_{n}\right)$
2. $T_{f[n]}^{H_{0}, \ldots, H_{n}}\left(\ldots, V_{j-1}, a V_{j}, \ldots\right)-T_{f[n]}^{H_{0}, \ldots, H_{n}}\left(\ldots, V_{j-1} a, V_{j}, \ldots\right)=$ $T_{f[n+1]}^{H_{0}, \ldots, H_{n}}\left(\ldots, V_{j-1},\left[H_{j}, a\right], V_{j}, \ldots\right)$

Theorem ()

For all $N \in \mathbb{N}: f(H+V)=\sum_{n=0}^{N} T_{f([]]}^{H, \ldots, H}(V, \ldots, V)+T_{f[N+1]}^{H+V, H, \ldots, H}(V, \ldots, V)$

Proof.

Induction basis $(N=0)$:

$$
\begin{aligned}
f(H+V) & \stackrel{(1)}{=} f(H)+T_{f^{[1]}}^{H+V, H}(V) \\
& \stackrel{(0)}{=} T_{f^{[0]}}^{H}()+T_{f^{[1]}}^{H+V, H}(V) .
\end{aligned}
$$

Induction step:

$$
\begin{aligned}
& f(H+V) \stackrel{(I H)}{=} \sum_{n=0}^{N} T_{f[n]}^{H, \ldots, H}(V, \ldots, V)+T_{f^{[N+1]}}^{H+V, H, \ldots, H}(V, \ldots, V) \\
& =\sum_{n=0}^{N+1} T_{f[n]}^{H, \ldots, H}(V, \ldots, V)+T_{f[N+1]}^{H+V, H, \ldots, H}(V, \ldots, V) \\
& -T_{f[N+1]}^{H, H, \ldots, H}(V, \ldots, V) \\
& \stackrel{(1)}{=} \sum_{n=0}^{N+1} T_{f[n]}^{H, \ldots, H}(V, \ldots, V)+T_{f f^{[N+2]}}^{H+V, H, \ldots, H}(V, \ldots, V)
\end{aligned}
$$

Theorem (humanity)

For all $N \in \mathbb{N}: f(H+V)=\sum_{n=0}^{N} T_{f([\mid]}^{H}, \ldots, H(V, \ldots, V)+T_{f[N+1]}^{H+V, H, \ldots, H}(V, \ldots, V)$

Proof.

Induction basis $(N=0)$:

$$
\begin{aligned}
f(H+V) & \stackrel{(1)}{=} f(H)+T_{f^{[1]}}^{H+V, H}(V) \\
& \stackrel{(0)}{=} T_{f^{[0]}}^{H}()+T_{f^{[1]}}^{H+V, H}(V) .
\end{aligned}
$$

Induction step:

$$
\begin{aligned}
& f(H+V) \stackrel{(I H)}{=} \sum_{n=0}^{N} T_{f^{[n]}}^{H, \ldots, H}(V, \ldots, V)+T_{f^{[N+1]}}^{H+V, H, \ldots, H}(V, \ldots, V) \\
& =\sum_{n=0}^{N+1} T_{f^{[n]}}^{H, \ldots, H}(V, \ldots, V)+T_{f^{[N+1]}}^{H+V, H, \ldots, H}(V, \ldots, V) \\
& -T_{f[N+1]}^{H, H, \ldots, H}(V, \ldots, V) \\
& \stackrel{(1)}{=} \sum_{n=0}^{N+1} T_{f[n]}^{H, \ldots, H}(V, \ldots, V)+T_{f^{[N+2]}}^{H+V, H, \ldots, H}(V, \ldots, V)
\end{aligned}
$$

Hence, it follows from just 0 and 1 that

$$
\operatorname{Tr}(f(D+t V)) \sim \sum_{n=1}^{\infty} t^{n} \operatorname{Tr}\left(T_{f^{[n]}}^{D}(V, \ldots, V)\right)
$$

Hence, it follows from just 0 and 1 that

$$
\operatorname{Tr}(f(D+t V)) \sim \sum_{n=1}^{\infty} t^{n} \operatorname{Tr}\left(T_{f[n]}^{D}(V, \ldots, V)\right)
$$

Similarly, it follows from 1 and 2 and cyclicity that the functionals

$$
\phi_{n}\left(a_{0}, \ldots, a_{n}\right)=\operatorname{Tr}\left(a_{0}\left[D, a_{1}\right] T_{f^{\prime}[n]}^{D}\left(\left[D, a_{1}\right], \ldots,\left[D, a_{n}\right]\right)\right)
$$

are (b, B)-cocycles for even n.

Hence, it follows from just 0 and 1 that

$$
\operatorname{Tr}(f(D+t V)) \sim \sum_{n=1}^{\infty} t^{n} \operatorname{Tr}\left(T_{f^{[n]}}^{D}(V, \ldots, V)\right)
$$

Similarly, it follows from 1 and 2 and cyclicity that the functionals

$$
\phi_{n}\left(a_{0}, \ldots, a_{n}\right)=\operatorname{Tr}\left(a_{0}\left[D, a_{1}\right] T_{f^{\prime}[n]}^{D}\left(\left[D, a_{1}\right], \ldots,\left[D, a_{n}\right]\right)\right)
$$

are (b, B)-cocycles for even n.

Adding some very general summability assumptions, one finds $\left.\frac{d^{n}}{d t^{n}} f(D+t V)\right|_{t=0}=T_{f[n]}^{D}(V, \ldots, V)$, convergence of the Taylor series, and entire cyclic cocycles that recover the spectral action:
$\operatorname{Tr}(f(D+V)-f(D))=\sum_{k=1}^{\infty}\left(c_{k} \int_{\psi_{2 k-1}} \operatorname{cs}_{2 k-1}(A)+\frac{1}{2 k} \int_{\phi_{2 k}} F^{k}\right) \cdot[\operatorname{van}$
Suijlekom-vN,2021]
Connes asked what happens to ϕ_{n} if $D \mapsto \frac{D}{\Lambda}$ and $\Lambda \rightarrow \infty$.. "not obvious at all"
Indeed, an answer requires unbounded multiple operator integrals!

Another reason for unbounded MOIs

From [vN-Sukochev-Zanin,2023]:
The local invariants $I_{k}(P)$ of an operator P acting in $L_{2}\left(\mathbb{T}_{\theta}^{d}\right)$ are the unique coefficients occurring in the heat trace expansion, which is the asymptotic expansion

$$
\begin{equation*}
\operatorname{Tr}\left(\lambda_{l}(y) e^{-t P}\right) \sim \sum_{\substack{k \geq 0 \\ k=0 \bmod 2}} t^{\frac{k-d}{2}} \tau\left(y I_{k}(P)\right), \quad t \downarrow 0 \quad\left(y \in L_{\infty}\left(\mathbb{T}_{\theta}^{d}\right)\right) \tag{1.1}
\end{equation*}
$$

In [42] it was shown that this expansion exists if (and in particular $e^{-t P}$ is trace class if) P is self-adjoint and of the form

$$
\begin{equation*}
P=\lambda_{l}(x) \Delta+\sum_{i=1}^{d} \lambda_{l}\left(a_{i}\right) D_{i}+\lambda_{l}(a) \quad \text { for some } \quad x, a_{i}, a \in C^{\infty}\left(\mathbb{T}_{\theta}^{d}\right), \tag{1.2}
\end{equation*}
$$

and later on:

$$
\mathbf{W}_{j}^{\mathscr{A}, \iota}= \begin{cases}\mathbf{A}_{\iota(j)} & (j \in \mathscr{A}) ; \tag{3.5}\\ \mathbf{P}, & (j \notin \mathscr{A}),\end{cases}
$$

where (for all $i \in\{1, \ldots, d\}$)

$$
\begin{equation*}
\mathbf{A}_{i}:=2 x \mathbf{D}_{i}+a_{i}, \quad \mathbf{P}:=x \sum_{i=1}^{d} \mathbf{D}_{i}^{2}+\sum_{i=1}^{d} a_{i} \mathbf{D}_{i}+a \quad \in \quad \mathcal{X} \tag{3.6}
\end{equation*}
$$

3.2. Main result. Our main result is formulated as follows.

Theorem 3.3. Let $d \in \mathbb{N}_{\geq 2}, k \in 2 \mathbb{Z}_{+}$, and let P be a self-adjoint operator acting in $L_{2}\left(\mathbb{T}_{\theta}^{d}\right)$ of the form (1.2) for positive invertible x. The $k^{\text {th }}$ order local invariant of P occurring in the asymptotic expansion (1.1) takes the form

$$
\begin{equation*}
I_{k}(P)=(-1)^{\frac{k}{2}} \pi^{\frac{d}{2}} \sum_{\frac{k}{2} \leq m \leq k} \sum_{\substack{\mathscr{A} \subseteq\{1, \ldots, m\} \\|\mathscr{A}|=2 m-k}} \sum_{:: \mathscr{A} \rightarrow\{1, \ldots, d\}} c_{d}^{(\iota)} \mathbf{T}_{F_{k, d}}^{x, m}\left(\mathbf{W}_{1}^{\mathscr{A}, \iota}, \ldots, \mathbf{W}_{m}^{\mathscr{A}, \iota}\right), \tag{3.7}
\end{equation*}
$$

The abstract Ψ differential calculus of Connes and Moscovici

The abstract Ψ differential calculus of Connes and Moscovici

The abstract Ψ differential calculus of Connes and Moscovici

The abstract Ψ differential calculus of Connes and Moscovici

The abstract Ψ differential calculus of Connes and Moscovici

The pseudodifferential calculus:

Let Θ be a positive invertible operator in \mathcal{H}. (Think of $\sqrt{1+D^{2}}$.)

- Define the Hilbert spaces

$$
\mathcal{H}^{s}:={\overline{\operatorname{dom}} \Theta^{s}}^{\|} \cdot \|_{s}, \quad\langle\phi, \psi\rangle_{\mathcal{H}^{s}}:=\left\langle\Theta^{s} \phi, \Theta^{s} \psi\right\rangle
$$

for $s \in \mathbb{R}$ where $\|\phi\|_{\mathcal{H}^{s}}:=\left\|\Theta^{s} \phi\right\|$ - though taking this closure is not necessary for $s \geqslant 0$. We write $\mathcal{H}^{\infty}=\bigcap_{s \geqslant 0} \mathcal{H}^{s}$, which is dense in \mathcal{H}.

The pseudodifferential calculus:

Let Θ be a positive invertible operator in \mathcal{H}. (Think of $\sqrt{1+D^{2}}$.)

- Define the Hilbert spaces

$$
\mathcal{H}^{s}:=\overline{\operatorname{dom} \Theta^{s}}\|\cdot\|_{s}, \quad\langle\phi, \psi\rangle_{\mathcal{H}^{s}}:=\left\langle\Theta^{s} \phi, \Theta^{s} \psi\right\rangle
$$

for $s \in \mathbb{R}$ where $\|\phi\|_{\mathcal{H}^{s}}:=\left\|\Theta^{s} \phi\right\|$ - though taking this closure is not necessary for $s \geqslant 0$. We write $\mathcal{H}^{\infty}=\bigcap_{s \geqslant 0} \mathcal{H}^{s}$, which is dense in \mathcal{H}.

- We say that a linear operator $A: \mathcal{H}^{\infty} \rightarrow \mathcal{H}^{\infty}$ is in the class

$$
\mathrm{op}^{r}=\mathrm{op}^{r}(\Theta)
$$

if A extends to a continuous operator

$$
\bar{A}^{s, r}: \mathcal{H}^{s+r} \rightarrow \mathcal{H}^{s}
$$

for all $s \in \mathbb{R}$. (If no confusion can arise, we write $A: \mathcal{H}^{s+r} \rightarrow \mathcal{H}^{s}$.)

The pseudodifferential calculus:

Let Θ be a positive invertible operator in \mathcal{H}. (Think of $\sqrt{1+D^{2}}$.)

- Define the Hilbert spaces

$$
\mathcal{H}^{s}:={\overline{\operatorname{dom}} \Theta^{s}}^{\|} \cdot \|_{s}, \quad\langle\phi, \psi\rangle_{\mathcal{H}^{s}}:=\left\langle\Theta^{s} \phi, \Theta^{s} \psi\right\rangle
$$

for $s \in \mathbb{R}$ where $\|\phi\|_{\mathcal{H}^{s}}:=\left\|\Theta^{s} \phi\right\|$ - though taking this closure is not necessary for $s \geqslant 0$. We write $\mathcal{H}^{\infty}=\bigcap_{s \geqslant 0} \mathcal{H}^{s}$, which is dense in \mathcal{H}.

- We say that a linear operator $A: \mathcal{H}^{\infty} \rightarrow \mathcal{H}^{\infty}$ is in the class

$$
\mathrm{op}^{r}=\mathrm{op}^{r}(\Theta)
$$

if A extends to a continuous operator

$$
\bar{A}^{s, r}: \mathcal{H}^{s+r} \rightarrow \mathcal{H}^{s}
$$

for all $s \in \mathbb{R}$. (If no confusion can arise, we write $A: \mathcal{H}^{s+r} \rightarrow \mathcal{H}^{s}$.)

- We write op := $\bigcup_{r \in \mathbb{R}} \mathrm{op}^{r}$ and $\mathrm{op}^{-\infty}:=\bigcap_{r \in \mathbb{R}} \mathrm{op}^{r}$.

The pseudodifferential calculus:

Let Θ be a positive invertible operator in \mathcal{H}. (Think of $\sqrt{1+D^{2}}$.)

- Define the Hilbert spaces

$$
\mathcal{H}^{s}:={\overline{\operatorname{dom}} \Theta^{s}}^{\|} \cdot \|_{s}, \quad\langle\phi, \psi\rangle_{\mathcal{H}^{s}}:=\left\langle\Theta^{s} \phi, \Theta^{s} \psi\right\rangle
$$

for $s \in \mathbb{R}$ where $\|\phi\|_{\mathcal{H}^{s}}:=\left\|\Theta^{s} \phi\right\|$ - though taking this closure is not necessary for $s \geqslant 0$. We write $\mathcal{H}^{\infty}=\bigcap_{s \geqslant 0} \mathcal{H}^{s}$, which is dense in \mathcal{H}.

- We say that a linear operator $A: \mathcal{H}^{\infty} \rightarrow \mathcal{H}^{\infty}$ is in the class

$$
\mathrm{op}^{r}=\mathrm{op}^{r}(\Theta)
$$

if A extends to a continuous operator

$$
\bar{A}^{s, r}: \mathcal{H}^{s+r} \rightarrow \mathcal{H}^{s}
$$

for all $s \in \mathbb{R}$. (If no confusion can arise, we write $A: \mathcal{H}^{s+r} \rightarrow \mathcal{H}^{s}$.)

- We write op := $\bigcup_{r \in \mathbb{R}} \mathrm{op}^{r}$ and $\mathrm{op}^{-\infty}:=\bigcap_{r \in \mathbb{R}} \mathrm{op}^{r}$.
- We define $\Psi^{r} \subseteq \mathrm{op}^{r}$ as those $A \in \mathrm{op}^{r}$ for which $\delta_{\Theta}^{n}(A) \in \mathrm{op}^{r}$ for each $n \geqslant 0$, where $\delta_{\Theta}(A):=[\Theta, A]$.

Theorem

Let $n \in \mathbb{N}$, let $H_{0}, \ldots H_{n}$ be self-adjoint operators in \mathcal{H}, and let $\phi: \mathbb{R}^{n+1} \rightarrow \mathbb{C}$ be of the form

$$
\phi\left(\lambda_{0}, \ldots, \lambda_{n}\right)=\int_{\Omega} a_{0}\left(\lambda_{0}, \omega\right) \cdots a_{n}\left(\lambda_{n}, \omega\right) d \nu(\omega),
$$

for a finite measure space (Ω, ν) and bounded measurable $a_{j}: \mathbb{R} \times \Omega \rightarrow \mathbb{C}$. Suppose that we have $a_{j}\left(H_{j}, \omega\right) \in$ op $^{0}(\Theta)$ and

$$
\left\|a_{j}\left(H_{j}, \omega\right)\right\|_{\mathcal{H}^{s} \rightarrow \mathcal{H}^{s}} \leqslant C_{s, H_{j}}\left\|a_{j}(\cdot, \omega)\right\|_{\infty}
$$

for every $0 \leqslant j \leqslant n, s \in \mathbb{R}$, and $\omega \in \Omega$, and certain constants $C_{s, H_{j}} \in \mathbb{R}$. Then the integral

$$
T_{\phi}^{H_{0}, \ldots, H_{n}}\left(V_{1}, \ldots, V_{n}\right) \psi:=\int_{\Omega} a_{0}\left(H_{0}, \omega\right) V_{1} a_{1}\left(H_{1}, \omega\right) \cdots V_{n} a_{n}\left(H_{n}, \omega\right) \psi d \nu(\omega)
$$

for $V_{1}, \ldots, V_{n} \in$ op, $\psi \in \mathcal{H}^{\infty}$, converges as a Bochner integral in \mathcal{H}^{s} for every $s \in \mathbb{R}$. This defines a well-defined map

$$
T_{\phi}^{H_{0}, \ldots, H_{n}}: \mathrm{op} \times \cdots \times \mathrm{op} \rightarrow \mathrm{op} .
$$

Theorem

Let $n \in \mathbb{N}$, let $H_{0}, \ldots H_{n}$ be self-adjoint operators in \mathcal{H}, and let $\phi: \mathbb{R}^{n+1} \rightarrow \mathbb{C}$ be of the form

$$
\phi\left(\lambda_{0}, \ldots, \lambda_{n}\right)=\int_{\Omega} a_{0}\left(\lambda_{0}, \omega\right) \cdots a_{n}\left(\lambda_{n}, \omega\right) d \nu(\omega),
$$

for a finite measure space (Ω, ν) and bounded measurable $a_{j}: \mathbb{R} \times \Omega \rightarrow \mathbb{C}$. Suppose that we have $a_{j}\left(H_{j}, \omega\right) \in$ op $^{0}(\Theta)$ and

$$
\left\|a_{j}\left(H_{j}, \omega\right)\right\|_{\mathcal{H}^{s} \rightarrow \mathcal{H}^{s}} \leqslant C_{s, H_{j}}\left\|a_{j}(\cdot, \omega)\right\|_{\infty}
$$

for every $0 \leqslant j \leqslant n, s \in \mathbb{R}$, and $\omega \in \Omega$, and certain constants $C_{s, H_{j}} \in \mathbb{R}$. Then the integral

$$
T_{\phi}^{H_{0}, \ldots, H_{n}}\left(V_{1}, \ldots, V_{n}\right) \psi:=\int_{\Omega} a_{0}\left(H_{0}, \omega\right) V_{1} a_{1}\left(H_{1}, \omega\right) \cdots V_{n} a_{n}\left(H_{n}, \omega\right) \psi d \nu(\omega)
$$

for $V_{1}, \ldots, V_{n} \in \mathrm{op}, \psi \in \mathcal{H}^{\infty}$, converges as a Bochner integral in \mathcal{H}^{5} for every $s \in \mathbb{R}$. This defines a well-defined map

$$
T_{\phi}^{H_{0}, \ldots, H_{n}}: \mathrm{op} \times \cdots \times \mathrm{op} \rightarrow \mathrm{op} .
$$

If $\Theta=1$, we get the usual MOI of [Peller, 2006]. If $\Theta=\sqrt{1+\Delta}$ on $L^{2}\left(\mathbb{R}^{d}\right)$, then $\mathcal{H}^{s}=W_{2}^{s}\left(\mathbb{R}^{d}\right)$. For a spectral triple, take $\Theta=\sqrt{1+D^{2}}$.

The main application:

An elliptic operator of order $r \in \mathbb{R}$ is an operator $H \in \operatorname{op}^{r}(\Theta)$ for which there exists a parametrix $P \in \mathrm{op}^{-r}(\Theta)$ such that

$$
\begin{aligned}
& H P=1_{\mathcal{H} \infty}+R_{1} ; \\
& P H=1_{\mathcal{H}^{\infty}}+R_{2},
\end{aligned}
$$

where $R_{1}, R_{2} \in$ op $^{-\infty}$.
We call $f \in C^{\infty}(\mathbb{R})$ (or \mathbb{R}_{+}) of order $\beta \in \mathbb{R}$ if

$$
\left(\sqrt{1+x^{2}}\right)^{k-\beta+\epsilon} f^{(k)}(x)
$$

is bounded for all $k \in \mathbb{N}$.
If f is of order β, if H_{0}, \ldots, H_{n} are symmetric and elliptic of order $h>0$, and if $V_{j} \in \mathrm{op}^{r_{j}}$, then we obtain

$$
T_{f[n]}^{H_{0}, \ldots, H_{n}}\left(V_{1}, \ldots, V_{n}\right) \in \mathrm{op}^{(\beta-n) h+\sum r_{j}}
$$

E.g., if $f(x)=e^{-x}$, the MOI is a smoothing operator...

Some notes on elliptic operators:

Proposition

Let $H \in \mathrm{op}^{r}$ be an elliptic operator. If $x \in \mathcal{H}^{-\infty}$ is such that $H x \in \mathcal{H}^{s}$ for an $s \in \mathbb{R}$, then $x \in \mathcal{H}^{s+r}$.

Proposition

Let $H \in \mathrm{op}^{r}, r \geqslant 0$, be an elliptic and symmetric operator. Then H is self-adjoint with domain \mathcal{H}^{r}.

Theorem

Let $H \in \mathrm{op}^{r}, r>0$, be elliptic and symmetric, and let E denote its spectral measure. If $f \in L_{\infty}^{\beta}(E), \beta \in \mathbb{R}$, then $f(H) \in \mathrm{op}^{\beta r}$ with

$$
\|f(H)\|_{\mathcal{H}^{s+\beta r} \rightarrow \mathcal{H}^{s}} \leqslant C_{s, H}\|f\|_{L_{\infty}^{\beta}(E)}
$$

Theorem (Expansion of MOIs)

Let f be of order β, H symmetric and elliptic of order $h>0$, and $V_{i} \in$ op $^{r_{i}}$. If $\delta_{H}^{n}\left(V_{i}\right) \in \mathrm{op}^{n(h-\epsilon)+r_{i}}$ for all $n \in \mathbb{N}$, then we have

$$
T_{f[n]}^{H, \ldots, H}\left(V_{1}, \ldots, V_{n}\right) \sim \sum_{m=0}^{\infty} \sum_{m_{1}+\ldots+m_{n}=m} \frac{C_{m_{1}, \ldots, m_{n}}}{(n+m)!} \delta_{H}^{m_{1}}\left(V_{1}\right) \cdots \delta_{H}^{m_{n}}\left(V_{n}\right) f^{(n+m)}(H)
$$

Two ways to expand the spectral action $\operatorname{Tr}\left(f\left(\frac{D+V}{\Lambda}\right)\right)$:

1. Expand $\operatorname{Tr}\left(f\left(\frac{D+V}{\Lambda}\right)\right)$ in Λ

$$
\begin{aligned}
\operatorname{Tr}\left(f\left(\frac{D_{M \times F}+V}{\Lambda}\right)\right)= & c_{0} \Lambda^{4} \operatorname{vol}(M)+c_{1} \Lambda^{2} \int R \sqrt{g} d x+c_{2} \int \operatorname{tr} F_{\mu \nu} F^{\mu \nu} \\
& -c_{3} \int|\phi|^{2}+c_{4} \int|\phi|^{4}+\cdots
\end{aligned}
$$

Spectral triple \rightarrow Physical effective action, RG flow \rightarrow measurable data. But: noncommutativity is ignored in intermediate step.

Renormalization Group flow
2. Expand $\operatorname{Tr}\left(f\left(\frac{D+V}{\Lambda}\right)\right)$ in $\Lambda^{-1} V$ Taylor: $\operatorname{Tr}\left(f\left(\frac{D+V}{\Lambda}\right)\right)=\sum_{n=0}^{\infty} \frac{\Lambda^{-n}}{n!} \operatorname{Tr}\left(T_{f[n]}^{D / \Lambda, \ldots, D / \Lambda}(V, \ldots, V)\right)$

Theorem (Expansion of MOIs)

Let f be of order β, H symmetric and elliptic of order $h>0$, and $V_{i} \in \mathrm{op}^{r_{i}}$. If $\delta_{H}^{n}\left(V_{i}\right) \in \mathrm{op}^{n(h-\epsilon)+r_{i}}$ for all $n \in \mathbb{N}$, then we have

$$
T_{f[n]}^{H, \ldots, H}\left(V_{1}, \ldots, V_{n}\right) \sim \sum_{m=0}^{\infty} \sum_{m_{1}+\ldots+m_{n}=m} \frac{C_{m_{1}, \ldots, m_{n}}}{(n+m)!} \delta_{H}^{m_{1}}\left(V_{1}\right) \cdots \delta_{H}^{m_{n}}\left(V_{n}\right) f^{(n+m)}(H)
$$

Theorem (Expansion of MOIs)

Let f be of order β, H symmetric and elliptic of order $h>0$, and $V_{i} \in \mathrm{op}^{r_{i}}$. If $\delta_{H}^{n}\left(V_{i}\right) \in \mathrm{op}^{n(h-\epsilon)+r_{i}}$ for all $n \in \mathbb{N}$, then we have

$$
T_{f[n]}^{H, \ldots, H}\left(V_{1}, \ldots, V_{n}\right) \sim \sum_{m=0}^{\infty} \sum_{m_{1}+\ldots+m_{n}=m} \frac{C_{m_{1}, \ldots, m_{n}}}{(n+m)!} \delta_{H}^{m_{1}}\left(V_{1}\right) \cdots \delta_{H}^{m_{n}}\left(V_{n}\right) f^{(n+m)}(H)
$$

Combining this with $[f(\Theta), V]=T_{f^{[1]}}^{\Theta}([\Theta, V])$, one obtains formulas from [Connes-Moscovici,1995] like

$$
\left[\Theta^{\alpha}, V\right] \sim \sum_{k=1}^{\infty}\binom{\alpha}{k} \delta_{\Theta}^{k}(V) \Theta^{\alpha-k}
$$

and

$$
[\log (\Theta), V] \sim \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \delta_{\Theta}^{k}(V) \Theta^{-k}
$$

Besides old results, we also obtain a new one: an open question posed by Iochum a few years ago.

Corollary

Let $(\mathcal{A}, \mathcal{H}, D)$ be a regular s-summable spectral triple, $s>0$. Let $V \in \mathcal{B}$ be self-adjoint and bounded, where \mathcal{B} is the algebra generated by \mathcal{A} and D. If

$$
\operatorname{Tr}\left(Q e^{-t D^{2}}\right)
$$

admits an asymptotic expansion as $t \rightarrow 0$ for each $Q \in \mathcal{B}$, then

$$
\operatorname{Tr}\left(P e^{-t(D+V)^{2}}\right)
$$

admits an asymptotic expansion as $t \rightarrow 0$ for each $P \in \mathcal{B}$.

Besides old results, we also obtain a new one: an open question posed by Iochum a few years ago.

Corollary

Let $(\mathcal{A}, \mathcal{H}, D)$ be a regular s-summable spectral triple, $s>0$. Let $V \in \mathcal{B}$ be self-adjoint and bounded, where \mathcal{B} is the algebra generated by \mathcal{A} and D. If

$$
\operatorname{Tr}\left(Q e^{-t D^{2}}\right)
$$

admits an asymptotic expansion as $t \rightarrow 0$ for each $Q \in \mathcal{B}$, then

$$
\operatorname{Tr}\left(P e^{-t(D+V)^{2}}\right)
$$

admits an asymptotic expansion as $t \rightarrow 0$ for each $P \in \mathcal{B}$.
Thanks!

Appendix

Proposition

Let $H \in \mathrm{op}^{r}(\Theta)$ be such that $[\Theta, H] \in \mathrm{op}^{r}$. If the extension

$$
H: \mathcal{H}^{s_{0}+r} \rightarrow \mathcal{H}^{s_{0}}
$$

has a bounded inverse

$$
H^{-1}: \mathcal{H}^{s_{0}} \rightarrow \mathcal{H}^{s_{0}+r}
$$

for one particular $s_{0} \in \mathbb{R}$, then $\left.H^{-1}\right|_{\mathcal{H}_{\infty}} \in \mathrm{op}^{-r}$. We have $\left.H H^{-1}\right|_{\mathcal{H} \infty}=\left.H^{-1} H\right|_{\mathcal{H} \infty}=1_{\mathcal{H} \infty}$. In particular, if $H \in \mathrm{op}^{r}$ and $[\Theta, H] \in \mathrm{op}^{r}$ with $r \geqslant 0$, then we have as (unbounded) operators

$$
\sigma\left(H: \mathcal{H}^{s_{0}+r} \subseteq \mathcal{H}^{s_{0}} \rightarrow \mathcal{H}^{5_{0}}\right)=\sigma\left(H: \mathcal{H}^{s+r} \subseteq \mathcal{H}^{s} \rightarrow \mathcal{H}^{5}\right)
$$

for all $s \in \mathbb{R}$.

Lemma

Let $H \in o p^{0}$ be such that $[\Theta, H] \in o p^{0}$ and $\bar{H}^{0,0}: \mathcal{H} \rightarrow \mathcal{H}$ is self-adjoint. Then for all $s \in \mathbb{R}$, there is a constant $C_{s}>0$ such that

$$
\left\|(z-H)^{-1}\right\|_{\mathcal{H}^{s} \rightarrow \mathcal{H}^{s}} \leqslant C_{s} \frac{1}{|\Im(z)|}\left(\frac{\sqrt{1+|z|^{2}}}{|\Im(z)|}\right)^{\left.\right|^{|s|}-1}, \quad z \in \mathbb{C} \backslash \mathbb{R} .
$$

[^0]: We use the Chern character of $(\mathcal{A}, \mathcal{H}, D)$ in entire cyclic cohomology (cf. [2] given in the most efficient manner by the JLO formula, which defines the components of an entire cocycle in the (b, B) bicomplex:
 (90)
 $\psi_{n}\left(a^{0}, \ldots, a^{n}\right)=\sqrt{2 i} \int_{\sum_{a} w_{i}=1, v i \geq 0}$
 Trace $\left(a^{0} e^{-\nu_{0} D^{2}}\left[D, a^{1}\right] e^{-v_{1} D^{2}} \ldots e^{-v_{n-1} D^{2}}\left[D, a^{n}\right] e^{-v_{n} D^{2}}\right), \quad \forall a^{j} \in \mathcal{A}$
 e. O_{8}. where n is odd.

