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Part La:
MOIs in Connes’ approach to particle physics



Noncommutative geometry

A spectral triple (A, H, D) consists of a *-algebra A C B(H) and a
self-adjoint operator D, acting in the Hilbert space H, such that (D — i)_1 is
compact and such that [D, a] extends to a bounded operator for all a € A.

Example: spectral triple associated to M = S*
Algebra: A := C>(S")
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Noncommutative geometry

A spectral triple (A, H, D) consists of a *-algebra A C B(H) and a
self-adjoint operator D, acting in the Hilbert space H, such that (D — i)_1 is
compact and such that [D, a] extends to a bounded operator for all a € A.

Example: spectral triple associated to M = S*

Algebra: A := C>(S")

Hilbert space: H := L*(S) with basis {tx }xez, ¥i(0) = ™.
AXH —H, (a-¢)(0) = a(0)y(0).

Operator: D := —i%, D = kapy
[D,a] = D(a-¥) — a- D(¢) = (~i)g5(a-¥) — (~i)aggy = (—i) G
[D,a] = ,,'%




Connes’ Reconstruction theorem: If A is commutative (and 8 technical
properties hold) then (A, H, D) must be of the form

(COO(M)v L2(E)7 DM)v

for a Riemannian manifold M, a spinor bundle E — M, and Dy the Dirac
operator in L*(E).



The spectral action:

Tr(f(D)), for a suitable function f : R — R and a self-adjoint operator D
whose spectrum encodes ‘the physics’.
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Any countably additive way to obtain a number from this spectrum is of
the form Tr(f(D)).




Two ways to expand the spectral action Tr(f(Z£%)):
1. Expand Tr(f(Z£%)) in A

Dyxr+V

Tr(f( A

)) =coA*vol(M) 4 ciA? / R\/gdx + c / trF. F*

o [1of+a 1o+

Spectral triple—Physical effective
action, RG flow — measurable data.
But: noncommutativity is ignored in
intermediate step.

logo(p/GeV)

Renormalization Group flow

cf. [van Suijlekom, Chamseddine, Connes, JHEP]

2. Expand Tr(f(2£Y)) in A7'V
Taylor: Tr(f(2£Y)) = 1000 AL T(To PN (v, v))



Part Lb:
MOIs in the wild noncommutative literature



One may spot MOIs throughout the noncommutative literature.

e.g.

We use the Chern character of (A, H, D) in entire cyclic cohomology (cf. [2])
given in the most efficient manner by the JLO formula, which defines the com-
ponents of an entire cocycle in the (b, B) bicomplex:

(90) Gnla®,a") =V [
k.

Trace (a” e [D,al] o2

uD? | emnaaD? [ g

where n is odd.
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‘The computation of this matrix-valued function ¢ is based on the Volterra series
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1) (we also use and

1.1. Rearrangement Lemma and multivariable functional calculus. An impor-
tant technical tool for the calculation of heat coefficients in the noncommutative
setting is the Rearrangement Lemma which informally reads.

by fylu

[} by i

— kAT, AAR)
where the function F(s,...., s,) is

Aoy by, (14)

F(s) =

fou) - frfusi) .. fy (usp) du
3

and Al signifies that the modular operator A =
[CoMoty] it is proved for the conerete integral

114 k) by (1))
and |

K2 acts on the j-th factor. In

By (14uk?) ™ du, (1.5)

and

e 4.3 (O st s ks ). Lt (4.2D) b o o iy sl
Qe et e 1 et N = 241 e ] et e i
Jart, and e u € A be uniary, Th

Pl index(QuQ) = hres—o-ars (S e 9 Chn(1)

ot € A= (40 0 € R 0.<0 < /2 R) = = (14429 ad
o o

Ry e
o 7(‘) ‘/A wR VD, R () [D, A.M\nm‘u).l.

Inparticular the swm on the right hand side of 1) analytically continues to o deleted neighbourhood
of = (1 )/2 with ot worst  simple pole at 7 = (1 - q)/2. Morcover, the complez function

s i (0, B) cocyele for A modulo functions holomorphic in a half-plane
containing r = (1 4)/2.
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One comes accross expressions roughly like

i
{ «2;I¢f (2)(z— D) 'Vi(z—D) '

or

or

2 Z AN+ X)) (Vi - - (Vi)in_sin Eio

iQyee-sin=1

Spoﬂer alert: they are all the same.

= TPV, Vo).

.» / m(t)eftsoD Vleitle o VneftsnDds dt,
R n

Vo(z— D) 'dz



Let Ho, ..., H, be self-adjoint in H.
Suppose ¢ : R™™ — R is measurable and can be written as

(;5()\0,...,)\,,):/ao()\o,a)---an()\n,a)da
b3

for a finite measure space (X, o), and bounded measurable o : ¥ x R — R.
We define [Peller 2006] the multiple operator integral
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Let Ho, ..., H, be self-adjoint in H.
Suppose ¢ : R™™ — R is measurable and can be written as

qs(Ao,...,An):/ao(Am)---an(An,a)da
)N

for a finite measure space (X, o), and bounded measurable o : ¥ x R — R.
We define [Peller 2006] the multiple operator integral

T (Ve Vo = /Z ao(Ho,0)Viaa(Hi,0) - - - Vaan(Hn, o)1 do.
This defines a well-defined multilinear operator
TD : B(H) x - x B(H) — B(H).

One often sees ¢ = I, If [0 € L* then ¢ = " splits as above. (Because
P

e

of 2 .
Credit n = 1: Daletskii, Krein, Léwner, Krein, Birman, Solomyak



For the analysts, MOIs are nice because they lead to sharp bounds:
> ||f(D+ V)—f(D)|lp < cllflLip|| V||, [Potatov,Sukochev]

2
> [[[F(D), V1ll» < GolIfl[LinlI[D; V1llp, Co ~ 55

P
[Caspers,Montgomery-Smith,Potapov,Sukochev]

> || L A(D 4 tV)|mollp < ol F™]|oo || V||2[Potatov,Sukochev,Skripka]

dtn
where p € (1,00).
Direct applications are spectral shift functions, but also the sharpness of
the above results is quite helpful.



In the Journal of Soviet Mathematics, 1993:
OPERATOR INTEGRATION, PERTURBATIONS, AND

COMMUTATORS
M. Sh. Birman and M. Z. Solomyak UDC 517.43
Under mild assumption, integral representations of the form
HA)I-T-5ih)= jjﬁﬂ’_L{’“ AE Y AT-TANAE ) , *

are justified. Here Ay, k = 0, 1, is a self-adjoint operator in a Hilbert space. ¥, , 7 is an operator from. #,

into W ; in general, all the operators are unbounded; Ey is the spectral measure of the operator Ay. On the
basis of the representation (*), estimates of the s-numbers of the operator  ¥(AD-T= 3-$(A;) : in terms of
the s-numbers of the operator . A;J~ JA, are given. Analogous results are obained for commutators and

anticommutators.
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are justified. Here Ay, k = 0, 1, is a self-adjoint operator in a Hilbert space. ¥, , 7 is an operator from. #,
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In MOI notation:
1. f(A)—f(B)_ f[1 (A B)
2. [f(H),a] = T/}([H, a])

Here, fm(p A) = 7"}3_&(/\)



Adding the Oth order f(H) = Tf"['{,]() one realises the two relations relate
MOIs of 0th order to MOIs of 1st order.

1. f(A)—f(B) = T} (A B)

2. [f(H),a] = Tj"([H, a])

£l



Adding the Oth order f(H) = Tf"['{,]() one realises the two relations relate
MOIs of 0th order to MOIs of 1st order.

1. f(A)—f(B) = T} (A B)

2. [f(H),a] = Tj"([H, a])

1
Generalise to higher order:

0. f(H) = Ty ()

f
LT AV Vp) = TH R (VL V) =
Tf"[’,?i,lj‘,A,B,.A.,Hn(Vh S LA=B, .., V)
2. Tf"[’r?],...,Hn(, ., Vo, aV, o) — T;'[I,S)]7<..7Hn(. o Viia V) =

THD"“’H"(. R Vj—l: [Hj7 a]7 Vj’ o )

fln+1]



Theorem ()

Forall N € N: f(H+ V) =N ThoH(v, v+ THG (v, v)

Induction basis (N = 0):

=

f(H+ V)= f(H)+ TP (v)

1

C

T+ T/ (V).

Induction step:

FIN+1]

N
F(H+ V) ST THe (Y vy THEH YY)
n=0

N+1
=S TV, )+ TR (v, )
n=0

_ THREHy )

FIN+1]
N+1
@) H,...H H4V H, .o H
= Tf[n] (V7"'7V)+Tf[/v++2] (V,...,V)
n=0




Theorem (humanity)

Forall N € N: f(H+ V)=S0 THhoH(v, . v)+ T H(v, . v)

fln]

| \

Proof.
Induction basis (N = 0):

=

)

f(H+ V)= f(H)+ TP (v)

1

S

) ,
T+ T/ (V).

Induction step:

FIN+1]

N
F(H+ V) ST THe (Y vy THEH YY)
n=0

N+1
=S TV, )+ TR (v, )
n=0

_ THREHy )

fFIN+1]
) N+1
H,...,H H+V,H,....H
:ZTf["] (V7"'7V)+Tf[/v+2] (V,...,V)
n=0
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Similarly, it follows from 1 and 2 and cyclicity that the functionals
dn(ao, ..., an) = Tr(ao[D, ai] TfD,[n]([D7 al,...,[D,an]))

are (b, B)-cocycles for even n.



Hence, it follows from just 0 and 1 that
Tr(F(D+tV) ~ Y t"TH(TRy(V, ..., V).
n=1

Similarly, it follows from 1 and 2 and cyclicity that the functionals
dn(ao, ..., an) = Tr(ao[D, ai] TfD,[n]([D7 al,...,[D,an]))

are (b, B)-cocycles for even n.

Adding some very general summability assumptions, one finds

(D + tV)|e—o = TRN](V, ..., V), convergence of the Taylor series, and
entire cyclic cocycles that recover the spectral action:

Te(F(D + V) — £(D)) = 32, (ck o k1 (A) + % [ Fk) . [van
Suijlekom-vN,2021]

Connes asked what happens to ¢, if D +— % and A — oo.. “not obvious at
all”

Indeed, an answer requires unbounded multiple operator integrals!



Another reason for unbounded MOIs
From [vN-Sukochev-Zanin,2023]:

The local invariants I;(P) of an operator P acting in Ly(T§) are the unique
coefficients occurring in the heat trace expansion, which is the asymptotic expansion

k—d
1y TN~ Y T I(P), t10 (y€ Loo(TH)).
k>0
k=0mod2
In [42] it was shown that this expansion exists if (and in particular e~ is trace
class if) P is self-adjoint and of the form

d
(1.2) P = X\(x)A+ Z/\l(ﬂi)Di + Ai(a) for some w,a;,a€ C”(Tg),

i=1

and later on:

@) wye (A G
P, (U ¢g),
where (for all i € {1,...,d})
d d
(3.6) A, :=2zD; + a;, P::IZD?+ZaiDi+a e X.

3.2. Main result. Our main result is formulated as follows.

Theorem 3.3. Let d € N>o, k € 2Z,, and let P be a self-adjoint operator acting
in Ly(T$) of the form (1.2) for positive invertible x. The k™ order local invariant
of P occurring in the asymptotic expansion (1.1) takes the form

(3.7)

L(P)=(-Dizf S Y S Ty (Wi W),

E<m<k @C{L,...,m} v/ —{1,...d}
| |=2m—k
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The pseudodifferential calculus:

Let © be a positive invertible operator in H. (Think of /1 + D2.)
» Define the Hilbert spaces

HE = ml\H57 <¢7¢>H5 — (es¢7 es¢>

for s € R where ||¢||#s := [|©°¢|| — though taking this closure is not
necessary for s > 0. We write H> = ﬂ520 H?®, which is dense in H.
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» We say that a linear operator A : H* — H* is in the class
op’ = op'(©)
if A extends to a continuous operator
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The pseudodifferential calculus:

Let © be a positive invertible operator in H. (Think of /1 + D2.)
» Define the Hilbert spaces

HS = dOm@S”.HS7 <¢7¢>H5 = <€)s¢)7 esw>
for s € R where ||¢||#s := [|©°¢|| — though taking this closure is not

necessary for s > 0. We write H*> = (1), H*, which is dense in H.

» We say that a linear operator A : H* — H* is in the class
o’ = op'(©)

if A extends to a continuous operator

AT e

for all s € R. (If no confusion can arise, we write A : H*T" — H°.)
=\,er 0P

» We define V" C op” as those A € op” for which §§(A) € op” for each
n > 0, where do(A) := [©, A].

[e')

> We write op := [J,. op" and op™



Theorem

Let n € N, let Hy, ... H, be self-adjoint operators in H, and let ¢ : R™! — C
be of the form

¢()\0,...,)\,,):/an()\o,w)»--a,,()\n,w)du(w),

for a finite measure space (€2, ) and bounded measurable a; : R x Q — C.
Suppose that we have a;(H;,w) € op®(©) and

lla;(Hj, w)ll#s—ms < Co,mpllai(c )l oo

for every 0 < j < n, s € R, and w € Q, and certain constants Cs,Hj e R.
Then the integral

T (Ve Vo) = / a0(Ho, w) Va1 (H1,w) - - - Voan(Hn, w)t dv(w),
Q

for Vi,..., V, € op, ¥ € H, converges as a Bochner integral in H° for
every s € R. This defines a well-defined map

T(I;O"“’H" OpX .- X O0Op—op.
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Let n € N, let Hy, ... H, be self-adjoint operators in H, and let ¢ : R™! — C
be of the form

¢()\0,...,)\,,):/an()\o,w)»--a,,()\n,w)du(w),

for a finite measure space (€2, ) and bounded measurable a; : R x Q — C.
Suppose that we have a;(H;,w) € op®(©) and

lla;(Hj, w)ll#s—ms < Co,mpllai(c )l oo

for every 0 < j < n, s € R, and w € Q, and certain constants Cs,Hj e R.
Then the integral

T (Ve Vo) = / a0(Ho, w) Va1 (H1,w) - - - Voan(Hn, w)t dv(w),
Q

for Vi,..., V, € op, ¥ € H, converges as a Bochner integral in H° for
every s € R. This defines a well-defined map

T:O"“’H" OpX .- X O0Op—op.

v

If © = 1, we get the usual MOI of [Peller, 2006]. If © = /1 + A on L*(RY),
then H* = W;s(RY). For a spectral triple, take © = /1 + DZ.



The main application:

An elliptic operator of order r € R is an operator H € op"(®) for which
there exists a parametrix P € op™"(©) such that

HP = 14~ + Ry;
PH = 140 + R»,

where Ri, R, € op™°°.
We call f € C®(R) (or R;) of order 8 € R if

( /1 + X2)k7ﬂ+ef(k)(X)

is bounded for all kK € N.
If f is of order 3, if Hy, ..., H, are symmetric and elliptic of order h > 0,
and if V; € op”, then we obtain

T (Vi V) € oplP MM

E.g., if f(x) = e™*, the MOI is a smoothing operator...



Some notes on elliptic operators:

Let H € op” be an elliptic operator. If x € H™°° is such that Hx € H°® for an
s € R, then x € H*™".

Proposition

Let H € op”, r > 0, be an elliptic and symmetric operator. Then H is
self-adjoint with domain H'.

Theorem

| A

Let H € op”, r > 0, be elliptic and symmetric, and let E denote its spectral
measure. If f € L5 (E), B € R, then f(H) € op”” with

1F(H)llessr s < ConllFll o




Theorem (Expansion of MOISs)

Let f be of order 8, H symmetric and elliptic of order h > 0, and V; € op".
If 67,(V;) € op""=9*"i for all n € N, then we have

ey = C.rn yeeesMp oM mp n+m
Thi M (Wa o Vi)~ DD ST e () - (V) ()

m=0 my+...+mp=m




Two ways to expand the spectral action Tr(f(Z£%)):
1. Expand Tr(f(Z£%)) in A

Dyxr+V

Tr(f( A

)) =coA*vol(M) 4 ciA? / R\/gdx + c / trF. F*

o [1of+a 1o+

Spectral triple—Physical effective
action, RG flow — measurable data.
But: noncommutativity is ignored in
intermediate step.

logo(p/GeV)

Renormalization Group flow

cf. [van Suijlekom, Chamseddine, Connes, JHEP]

2. Expand Tr(f(2£Y)) in A7'V
Taylor: Tr(f(2£Y)) = 1000 AL T(To PN (v, v))



Theorem (Expansion of MOIs)

Let f be of order 8, H symmetric and elliptic of order h > 0, and V; € op".
If 6%,(Vi) € op""=)*"i for all n € N, then we have

ooog >, Cm yeeeyMp om mp n+m
T VeV~ 3L DL R () S (VTR

m=0 mi+...+mp=m




Theorem (Expansion of MOIs)

Let f be of order 8, H symmetric and elliptic of order h > 0, and V; € op".
If 67,(V;) € op""=9*"i for all n € N, then we have

ooog >, Cm yeeeyMp om mp n+m
T VeV~ 3L DL R () S (VTR

m=0 mi+...+mp=m

Combining this with [f(©), V] = T%([©, V]), one obtains formulas from
[Connes-Moscovici, 1995] like

(oo}

0"V~ (§) sbvier

and
oo

tog(©), VI~ > e (vye.



Besides old results, we also obtain a new one: an open question posed by
Tochum a few years ago.

Corollary

Let (A, H, D) be a regular s-summable spectral triple, s > 0. Let V € B be
self-adjoint and bounded, where B is the algebra generated by A and D. If

2
Tr(Qe ™)
admits an asymptotic expansion as t — 0 for each Q € B, then

Tr(PetO+V)")

admits an asymptotic expansion as t — 0 for each P € B.




Besides old results, we also obtain a new one: an open question posed by
Tochum a few years ago.

Corollary

Let (A, H, D) be a regular s-summable spectral triple, s > 0. Let V € B be
self-adjoint and bounded, where B is the algebra generated by A and D. If

2
Tr(Qe ™)
admits an asymptotic expansion as t — 0 for each Q € B, then

Tr(PetO+V)")

admits an asymptotic expansion as t — 0 for each P € B.

Thanks!




Appendix

Proposition

Let H € op”(©) be such that [©, H] € op”. If the extension

H: HOT —

has a bounded inverse
H™oHD — 1ot
for one particular sp € R, then H71|Hoo € op ". We have

HH™! |40 = H7'H|go = 13;. In particular, if H € op” and [©, H] € op”
with r > 0, then we have as (unbounded) operators

o(H:HO CHY 5 HY) =o(H: H CH — H)

for all s € R.

Lemma

| A

Let H € op® be such that [©, H] € op® and A H > H s self-adjoint.
Then for all s € R, there is a constant C; > 0 such that

alsl 1
_ 1 V14 |z]?
(z = H) Y lusoms < Cs ( 2 ) , z€C\R.

IS(2)] \ [S(2)]
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