Noncompact uniform universal approximation
e You

Can neural networks approximate any continuous function on R*n in the uniform
topology?

@ chatGPT
Yes, neural networks can theoretically approximate any continuous function on R" in
the uniform topology, according to the universal approximation theorem.
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Summary of the talk

Theorem [Cybenko 1989, Hornik et al 1989]

Every continuous function can be uniformly approximated by
neural networks on a compact subset.
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Summary of the talk

Theorem [Cybenko 1989, Hornik et al 1989]

Every continuous function can be uniformly approximated by
neural networks on a compact subset.

How about on the whole input set?
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Summary of the talk

Theorem [Cybenko 1989, Hornik et al 1989]

Every continuous function can be uniformly approximated by
neural networks on a compact subset.

How about on the whole input set?
The answer will give new connections to functional analysis,

algebra, and quantum theory. It also gives new insight in neural
networks.
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What is a (feedforward) neural network?

We fix an activation function ¢ : R — R, and an architecture
(n, ki, ..., ki k) like so:

N/ N/
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What is a (feedforward) neural network?

We fix an activation function ¢ : R — R, and an architecture
(n, ki, ..., ki k) like so:
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Given affine maps A’ : R¥ — R¥+1 each consisting of a
kiy1xk-matrix a' of weights and a vector of biases b’ € Rk+1,

3
TUDelft

TDH van Nuland, TU Delft

Noncompact uniform universal approximation



What is a (feedforward) neural network?

We fix an activation function ¢ : R — R, and an architecture
(n, ki, ..., ki k) like so:
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Given affine maps A’ : R¥ — R¥+1 each consisting of a
kiy1xk-matrix a' of weights and a vector of biases b’ € Rk+1,
the corresponding neural network f : R” — RK is
f:AIOQD®k/O"'OA]'OQD®k10AO.
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What is a (feedforward) neural network?

A 1-layer neural network f : R” — R is of
the form

/‘

o -
[
0

o= c P (a-x+b)

k1
F(x) = ciolaj - x+ by)
j=1

for a; € R", bj,¢c; € R.
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What is a (feedforward) neural network?
A 1-layer neural network f : R” — R is of

the form 5 5\ c
. O%o -4
F(x) = ciolaj - x+ by) 0 }

j=1 b
{e8) =E;‘P (o x + )

for a; € R", bj,¢c; € R.
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What is a (feedforward) neural network?

A 1-layer neural network f : R” — R is of
the form

k1
F(x) = ciolaj - x+ by)
j=1 O
for a; € R", bj,¢c; € R.
A 2-layer neural network f : R" — R is of
the form

ZCHSO Z 111290 aj; X+b1 )+ ))

CL¥(a, X+ b))
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What is a (feedforward) neural network?

A 1-layer neural network f : R” — R is of
the form

k1
F(x) = ciolaj - x+ by)
Jj=1
for a; € R", bj,¢c; € R.
A 2-layer neural network f : R" — R is of
the form

F(x) = cae(>_ ctpe(ay x+b})+b2))
J2

i

et cetera.
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What is a (feedforward) neural network?

A 1-layer neural network f : R” — R is of
the form

k1
F(x) = ciolaj - x+ by)
j=1

for a; € R", bj,¢c; € R.
A 2-layer neural network f : R" — R is of
the form

F(x) = cae(>_ ctpe(ay x+b})+b2))
J2 J

ke k
24 (§cg,\f(a,; xvj) k)
pay] T

et cetera.
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Vector spaces of neural networks

Definition
Let n € N and ¢ : R — R. The space of 1-layer neural networks
with n inputs, 1 output, and activation function ¢ is

N’;(R”) := span {xn—)ap(a-x+b) ‘ aeR" beR}. (1)

The corresponding space of /-layer neural networks is

NL(R") := span {x s o(F(x) + b) ‘ fe NI R, be R} ,

4

A neural network is then any element f € N (R")®X.
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Universal Approximation

Theorem [Cybenko 1989, Hornik et al 1989, Pinkus 1999, etc]
Let n,/ € N argg: ¢ : R — R be continuous and nonpolynomial.
Then NVL(R™) " = C(R"), where closure is taken with respect

to the compact convergence topology. In other words,

N([0,1]7) = ([0, 1]").

Proof is an excellent application of Functional Analysis.
Does not say how functions are approximated in practice, but
was and is still highly influential.
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The noncompact case: why?

@ It is interesting mathematically. The uniform topology,
defined by
[flloc := sup [f(x)]
xeRn

fo— £ iff ||fp — flloo = 0
is in many ways more natural than the compact
convergence topology.

@ After training of the network, one might want consistent
results regardless of the size of the input

@ Inputs are often not bounded (salary, speed, costs)

@ Even if they are, they might be big, and R"” is a good
approximation of a big set
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@ You

Can neural networks approximate any continuous function on R*n in the uniform
topology?

@ chatGPT
Yes, neural networks can theoretically approximate any continuous function on R" in
the uniform topology, according to the universal approximation theorem.

00 @O

Let's first debunk this...
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What can you not approximate?

Let ¢ = tanh. ¢(£o0) € R. Take n = 1. o)
You will never uniformly approximate sin

with neural networks.
Proof in the case [ =1, n=1.

Let f € M1(R), and write f(x) = Zjlle cjo(ajx + bj). Then

k
Jm F) =3 g Jim lapx+ b)
J:

k
=Y gp(+oo) €R
=it

Therefore ||f —sin|| > 3. So sin ¢ NI(R).
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It is a fundamental question whether all functions in Co(R")
can be approximated by 1-layer neural networks.

Typical universal approximation theorems separate compact

regions. They do not guarantee that these regions can
themselves be separated from infinity.
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It is a fundamental question whether all functions in Co(R")
can be approximated by 1-layer neural networks.

Typical universal approximation theorems separate compact
regions. They do not guarantee that these regions can

themselves be separated from infinity.

In fact no 1-layer neural networks are in Cp(R"), except 0.
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We are saved by the following fact:

Theorem [VN,2023]

Let ¢ € ® and let n € N. Any function in Go(R") can be
uniformly approximated by functions of the form

k
X chgo(aj - X+ b))
j=1

for some ay,...,ax € R"” by,...,bx,c1,...,c € R. In other
words,

Co(R") € NI(R™).

Here ® includes all nonpolynomial and
asymptotically polynomial ¢ : R -+ R
(e.g. ReLU, LReLU, smooth versions

of those), step functions, and more.
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We are saved by the following fact:

Theorem [VN,2023]

Let o € ® and let n € N. Any function in Co(R") can be
uniformly approximated by functions of the form

k
x =Y cp(aj - x + by)

j=1
for some ay,...,ax € R"” by,...,bx,c1,...,ck € R. In other
words,
Co(R") C MJ(R").

Dance Moves of Deep Learning
Activation Functions

Signoia Toon Seeo unceon Sorwus

Here ® includes all nonpolynomial and B o g
asymptotically polynomial ¢ : R — R '% /%/ i
&

(e.g. ReLU, LReLU, smooth versions

f those), step functions, and more.
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We are saved by the following fact:

Theorem [VN,2023]

Let ¢ € ® and let n € N. Any function in Co(R") can be
uniformly approximated by functions of the form

k
X chgo(aj - X + b))
j=1

for some ay,...,ax € R" by,..., b, c1,...,ck € R. In other
words,

Co(R") € NI(R™).

4

Activation Functions
Leaky ReLU

Here ® includes all nonpolynomial and Sigmoid, f et /

o(@) = ==

asymptotically polynomial ¢ : R — R [
(e.g. ReLU, LReLU, smooth versions w, ) om
of those), step functions, and more. 02 :
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Proof sketch

Although M1(R") N Co(R") =, we do have

NE(R™) N Co(R") # (. Proof sketch:

Figure: f(x,y) =

%go(x)—}- %cp(y) Figure: f, Figure: fg

If o =1[_1,1) and aj(.") = (cos Eni',sin %) then

1 n .
= Z E('D(aj( ) - x) = f € Co(R?). [not completely trivial]
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As any continuous function on a compact set K € R” can be
extended to a function in Co(R"), the statement

Co(R™) € NJ(R") recovers the usual universal approximation
theorem.

If ¢ € ® is continuous,

NLRN)™ = C(R")

NI(R™) C C(R™)
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As any continuous function on a compact set K € R” can be
extended to a function in Co(R"), the statement

Co(R™) € NJ(R") recovers the usual universal approximation
theorem.

If ¢ € ® is continuous,

NLRN)™ = C(R")

Co(R") € NI(R") C C(R")
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The bounded case

If ¢ € ® is continuous and bounded,

Go(R") C NL(R") C Cp(R")
Two cases: ¢(—00) = ¢(00) and p(—o0) # p(o0) The space

/\/Z,(]R") can be two things, but is otherwise independent from
pand /> 2.
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The case p(—0oc0) = p(00).

Let us assume ¢ € Go(R).

Theorem
Let p € Go(R). For all n,1 € N we have

N (R™) = span {x — g(P(x))

P:R" — RX linear
ge G(RY, 0<k<n|"

The right-hand side is known as the
commutative resolvent algebra Cr(R"),
which appears in quantum physics problems.
[vN 2019]
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Some intuition behind
NE®) =

Cr(R") :=span < x — g(P(x
Rl { 8P ge G(RF), 0<k<n

P :R" — RX linear } _

Note Go(R") C Cr(R") and [x — p(a- x)] € Cxr(R") for all

a € R" and ¢ € G(R). Also, multiplying two such functions is
again in Cr(R").

This allows us to prove g o (g1 o Py + g2 0 P2) € Cr(R") etc,
hence, adding layers preserves Cr(R"). (Details: approximate g
by a polynomial px(x) = axx* + - -- ap on the range of f and
note that g o f = axfk +--- +arf +ap € Cr(R") for

fe CR(R”).)
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The case p(—0o0) # p(c0)

Theorem

Let o € C(R) be such that the limits o(—00), p(c0) are finite
and satisfy p(—o0) # p(o0). Then for all n € N, | € N>j the
space of approximable functions equals

m

NI(R") = span {x > Htanh(aj - x)

Jj=1

m € Zxq, aj € R"}.

“tanh” can be replaced with
any strictly monotonous
bounded continuous function. 5

L

(g0 Pv)(giopay
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NI(R") = 5pan ¢ x Htanh(aj -x) | me€ Zsg,a; € R"
j=1

can be explained as: neural nets are indistinguishable from sums
of 'wedge functions’.

In fact, the scale doesn’t have
to be too large.

These structures have to appear
at large enough scale!

V I—>
(g0 Pv)(giopa
H?:l(gj © Paj)

https://wuw.
matlabsolutions.com/
visualize-neural-network/
neural-network.html
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New research questions

@ In both bounded cases, N}(R") is an algebra. Actually, a
commutative unital C*-algebra. C*-algebras were recently
used to generalize neural networks [Hashimoto et al. 2022].

@ Relation to tropical geometry
@ Applications to quantum algebra [Buchholz, vN, 2023]

e What if amount of nodes are restricted? Cf. [Kidger,
Lyons, 2020]

@ How about convolutional neural networks? Recurrent?

Lots of fun mathematics left to explore here!
7
TUDelft

TDH van Nuland, TU Delft Noncompact uniform universal approximation



