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Summary of the talk

Theorem [Cybenko 1989, Hornik et al 1989]

Every continuous function can be uniformly approximated by
neural networks on a compact subset.

How about on the whole input set?

The answer will give new connections to functional analysis,
algebra, and quantum theory. It also gives new insight in neural
networks.
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What is a (feedforward) neural network?

We fix an activation function ϕ : R→ R, and an architecture
(n, k1, . . . , kl , k) like so:

Given affine maps Al : Rkl → Rkl+1 each consisting of a
kl+1xkl -matrix al of weights and a vector of biases bl ∈ Rkl+1 ,
the corresponding neural network f : Rn → Rk is

f = Al ◦ ϕ⊗kl ◦ · · · ◦ A1 ◦ ϕ⊗k1 ◦ A0 .
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What is a (feedforward) neural network?

A 1-layer neural network f : Rn → R is of
the form

f (x) =

k1∑
j=1

cjϕ(aj · x + bj)

for aj ∈ Rn, bj , cj ∈ R.
A 2-layer neural network f : Rn → R is of
the form

f (x) =
∑
j2

c2j2ϕ(
∑
j1

c1j1j2ϕ(aj1 ·x+b1j1)+b2j2))

et cetera.
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Vector spaces of neural networks

Definition

Let n ∈ N and ϕ : R→ R. The space of 1-layer neural networks
with n inputs, 1 output, and activation function ϕ is

N 1
ϕ(Rn) := span

{
x 7→ ϕ(a · x + b)

∣∣∣ a ∈ Rn, b ∈ R
}
. (1)

The corresponding space of l-layer neural networks is

N l
ϕ(Rn) := span

{
x 7→ ϕ(f (x) + b)

∣∣∣ f ∈ N l−1
ϕ (Rn), b ∈ R

}
.

A neural network is then any element f ∈ N l
ϕ(Rn)⊕k .
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Universal Approximation

Theorem [Cybenko 1989, Hornik et al 1989, Pinkus 1999, etc]

Let n, l ∈ N and ϕ : R→ R be continuous and nonpolynomial.
Then N l

ϕ(Rn)
c.c.

= C (Rn), where closure is taken with respect
to the compact convergence topology. In other words,

N l
ϕ([0, 1]n) = C ([0, 1]n).

Proof is an excellent application of Functional Analysis.
Does not say how functions are approximated in practice, but
was and is still highly influential.
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The noncompact case: why?

1 It is interesting mathematically. The uniform topology,
defined by

‖f ‖∞ := sup
x∈Rn
|f (x)|

fn → f iff ‖fn − f ‖∞ → 0

is in many ways more natural than the compact
convergence topology.

2 After training of the network, one might want consistent
results regardless of the size of the input

3 Inputs are often not bounded (salary, speed, costs)

4 Even if they are, they might be big, and Rn is a good
approximation of a big set
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Let’s first debunk this...
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What can you not approximate?

Let ϕ = tanh. ϕ(±∞) ∈ R. Take n = 1.
You will never uniformly approximate sin
with neural networks.

Proof in the case l = 1, n = 1.

Let f ∈ N 1
ϕ(R), and write f (x) =

∑k
j=1 cjϕ(ajx + bj). Then

lim
x→∞

f (x) =
k∑

j=1

cj lim
x→∞

ϕ(ajx + bj)

=
k∑

j=1

cjϕ(±∞) ∈ R

Therefore ‖f − sin ‖∞ > 1
2 . So sin /∈ N 1

ϕ(R).
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It is a fundamental question whether all functions in C0(Rn)
can be approximated by 1-layer neural networks.

Typical universal approximation theorems separate compact
regions. They do not guarantee that these regions can
themselves be separated from infinity.

In fact no 1-layer neural networks are in C0(Rn), except 0.
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We are saved by the following fact:

Theorem [vN,2023]

Let ϕ ∈ Φ and let n ∈ N. Any function in C0(Rn) can be
uniformly approximated by functions of the form

x 7→
k∑

j=1

cjϕ(aj · x + bj)

for some a1, . . . , ak ∈ Rn, b1, . . . , bk , c1, . . . , ck ∈ R. In other
words,

C0(Rn) ⊆ N 1
ϕ(Rn).

Here Φ includes all nonpolynomial and
asymptotically polynomial ϕ : R→ R
(e.g. ReLU, LReLU, smooth versions
of those), step functions, and more.
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Proof sketch

Although N 1
ϕ(Rn) ∩ C0(Rn) = ∅, we do have

N 1
ϕ(Rn) ∩ C0(Rn) 6= ∅. Proof sketch:

Figure: f2(x , y) =
1
2ϕ(x) + 1

2ϕ(y) Figure: f4 Figure: f8

If ϕ = 1[−1,1] and a
(n)
j = (cos πjn , sin πj

n ), then

fn :=
n∑

j=1

1

n
ϕ(a

(n)
j · x)→ f ∈ C0(R2). [not completely trivial]
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As any continuous function on a compact set K b Rn can be
extended to a function in C0(Rn), the statement
C0(Rn) ⊆ N 1

ϕ(Rn) recovers the usual universal approximation
theorem.

If ϕ ∈ Φ is continuous,

N l
ϕ(Rn)

c.c.
= C (Rn)

C0(Rn) ⊂ N l
ϕ(Rn) ⊂ C (Rn)
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The bounded case

If ϕ ∈ Φ is continuous and bounded,

C0(Rn) ⊂ N l
ϕ(Rn) ⊂ Cb(Rn)

Two cases: ϕ(−∞) = ϕ(∞) and ϕ(−∞) 6= ϕ(∞) The space

N l
ϕ(Rn) can be two things, but is otherwise independent from

ϕ and l > 2.
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The case ϕ(−∞) = ϕ(∞).

Let us assume ϕ ∈ C0(R).

Theorem

Let ϕ ∈ C0(R). For all n, l ∈ N we have

N l
ϕ(Rn) = span

{
x 7→ g(P(x))

∣∣∣∣∣ P : Rn → Rk linear

g ∈ C0(Rk), 0 6 k 6 n

}
.

The right-hand side is known as the
commutative resolvent algebra CR(Rn),
which appears in quantum physics problems.
[vN 2019]
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Some intuition behind

N l
ϕ(Rn) =

CR(Rn) :=span

{
x 7→ g(P(x))

∣∣∣∣∣ P : Rn → Rk linear

g ∈ C0(Rk), 0 6 k 6 n

}
:

Note C0(Rn) ⊆ CR(Rn) and [x 7→ ϕ(a · x)] ∈ CR(Rn) for all
a ∈ Rn and ϕ ∈ C0(R). Also, multiplying two such functions is
again in CR(Rn).
This allows us to prove g ◦ (g1 ◦ P1 + g2 ◦ P2) ∈ CR(Rn) etc,
hence, adding layers preserves CR(Rn). (Details: approximate g
by a polynomial pk(x) = akx

k + · · · a0 on the range of f and
note that g ◦ f = ak f

k + · · ·+ a1f + a0 ∈ CR(Rn) for
f ∈ CR(Rn).)
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The case ϕ(−∞) 6= ϕ(∞)

Theorem

Let ϕ ∈ C (R) be such that the limits ϕ(−∞), ϕ(∞) are finite
and satisfy ϕ(−∞) 6= ϕ(∞). Then for all n ∈ N, l ∈ N>2 the
space of approximable functions equals

N l
ϕ(Rn) = span

{
x 7→

m∏
j=1

tanh(aj · x)

∣∣∣∣∣ m ∈ Z>0, aj ∈ Rn

}
.

“tanh” can be replaced with
any strictly monotonous
bounded continuous function.

a1

a2

∏2
j=1(gj ◦ paj)

a3

V

(g ◦ PV )(g1 ◦ pa3)
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N l
ϕ(Rn) = span

{
x 7→

m∏
j=1

tanh(aj · x)

∣∣∣∣∣ m ∈ Z>0, aj ∈ Rn

}

can be explained as: neural nets are indistinguishable from sums
of ’wedge functions’.

These structures have to appear
at large enough scale!

a1

a2

∏2
j=1(gj ◦ paj)

a3

V

(g ◦ PV )(g1 ◦ pa3)

In fact, the scale doesn’t have
to be too large.

https://www.

matlabsolutions.com/

visualize-neural-network/

neural-network.html
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New research questions

In both bounded cases, N l
ϕ(Rn) is an algebra. Actually, a

commutative unital C*-algebra. C*-algebras were recently
used to generalize neural networks [Hashimoto et al. 2022].

Relation to tropical geometry

Applications to quantum algebra [Buchholz, vN, 2023]

What if amount of nodes are restricted? Cf. [Kidger,
Lyons, 2020]

How about convolutional neural networks? Recurrent?

Lots of fun mathematics left to explore here!
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