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Part 1:

Cyclic expansion of the spectral
action



A spectral triple (A, H, D) consists of a *-algebra A and a self-adjoint
operator D, both acting in the same Hilbert space H, such that

(D —i)~! is compact and such that [D, a] extends to a bounded
operator for all a € A.

Example: spectral triple associated to M = S*
Algebra: A := C>(S1)
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A spectral triple (A, H, D) consists of a *-algebra A and a self-adjoint
operator D, both acting in the same Hilbert space H, such that

(D —i)~! is compact and such that [D, a] extends to a bounded
operator for all a € A.

Example: spectral triple associated to M = S*

Algebra: A := C>(S1)

Hilbert space: H := L?(St) with basis {¢x }rez, ¥ (0) = e*?.

AxH —=H, (g-9)(0) = g(0)v(6).

Dirac operator: D := fij—e, Dy, = kipy,

[D,al = D(a-¢) —a-D(¥) = (=i)g5(a-¥) — (—iagye = (—i) G5

da

[D,a] = —ig

For more general commutative spectral triples, D encodes the metric

structure of M, and [D, a] is related to the first derivatives of a.
Other examples: Riemannian spin manifolds, Moyal plane




Over a manifold M, gauge fields are Lie-algebra-valued one-forms:

A= "apdby € Qyp(M; g)
k

for functions ag, by € C°°(M;g). Over a noncommutative space,
gauge fields are self-adjoint elements of

Ob(A) = { 3 arlD.by] + ay.br € A} C BOH).
k
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non_spectral Renormalization Group flow, cf.

[van Suijlekom-Chamseddine-Connes, JHEP]
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Taylor expansion of the spectral action:

3

S[e] - s[o] = > ;tn Tr(f(D +1®))],_,

For instance, if f(z) = 2*:

Tr((D +t®)*)|,_ . = Tr(4D3®)

d
dt | t=0
More generally:

a Te(f(D +t®))|,_, = Tr(f'(D)®)

dt
It f(x) =
d—; Tr((D +t®)*)|,_, = Tr(160*D* + 80 DP D)
More generally:
1 ar
T dm Te(f(D +t®))|t=0 = — Z F s s X @i iy Py i @i i
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where f/'[\, p] = ’N(’\g\%ﬁl(“), A pv] = W’ etc. are the

divided differences of f’, {11,19,...} is an eigenbasis of D with
ecicenvalues {1 \o. . Y and & = (| P



Let {11,19,...} be an eigenbasis of D with eigenvalues {A1, Aa,...}.
Write ®;; = (¢;|®1);). Define

0 (I)_.;
= (Dy,...,D,)

kY
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[y \J .'.
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(@, ...

7<bn> - <(I)n7(I)17"‘

7<Dn71>
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Moreover,

<<I>1,a<I>2, .. ,(I)n> — <¢1a,¢27. . 7(I)n> = <¢17 [D,a],CI)g, e

(I)l q)la (I)l [D7 a‘]

>Mq>2 ) >M ; }a&»

Dy D3 Dy



<(I)17 SERE) ©n> = <(I)n7 (1)17 SERE) CDnfl>
Moreover,

<<I>1,a<I>2, .. ,(I)n> — <<I>1a,<I>27. . 7(I)n> = <@17 [D,a],fbg, .. ,(I)n>

D, ®a ) [D7 a]
>Dwa‘1)2 _ >DW<D2 — %2
08 O3 O3

(®,a®') — (Ra, ) =Y '[N, A (Pijajr®y; — Pigar; O))
i,7,k



<(I)17 SERE) ©n> = <(I)n7 (1)17 SERE) CDnfl>
Moreover,

<<I>1,a<I>2,...,<I>n> - <<I>1a,<I>27...,<I>n> = <@17 [D,a],CI)g,...,(b

1 ra ®; [D,d
>Dwaq)2 _ >DW<D2 — %2
08 O3 O3

(®,a®') — (Ra, ) =Y '[N, A (Pijajr®y; — Pigar; O))
b

- Z )\'L?)\j> - [)\Z;Ak])(pzjajk(p;ﬂ
.9,k



<(I)17 SERE) ©n> = <(I)n7 (1)17 SERE) CDnfl>
Moreover,

<<I>1,a<I>2,...,<I>n> - <<I>1a,<I>27...,<I>n> = <@17 [D,a],CI)g,...,(b

1 ra ®; [D,d
>Dwaq)2 _ >DW<D2 — %2
08 O3 O3

(®,a®') — (Ra, ) =Y '[N, A (Pijajr®y; — Pigar; O))
=
- Z )\'L?)\j> - [)\Z;Ak])(pzjajk(p;ﬂ
0,5,k
= PN ARy = AR)Rijagr®,
N



<(I)1v SERE) ©n> = <(I)n7 (1)17 SERE) CDnfl>
Moreover,

<<I>1,a<I>2,...,<I>n> - <<I>1a,<I>27...,<I>n> = <@17 [D,a],CI)g,...,(b

1 ra ®; [D,d
>Dwaq)2 _ >DW<D2 — %2
08 O3 O3

(®,a®') — (Ra, ) =Y '[N, A (Pijajr®y; — Pigar; O))

—~

- Z )\27 )\j> - [)\2; )\k])(pzjajk(p;ﬂ
0,5,k

= PN ARy = AR)Rijagr®,
N

= Z TN A, Ak] @i (D, al j1 @),
ijk



<(I)1v SERE) ©n> = <(I)n7 (1)17 SERE) CDnfl>
Moreover,

<<I>1,a<I>2,...,<I>n> - <<I>1a,<I>27...,<I>n> = <@17 [D,a],CI)g,...,(b

1 ra ®; [D,d
>Dwaq)2 _ >DW<D2 — %2
08 O3 O3

(®,a®') — (Ra, ) =Y '[N, A (Pijajr®y; — Pigar; O))

b

= Z s Ajs = s M) @ijan @,
0,5,k

= PN ARy = AR)Rijagr®,
N

= Z TN A, Ak] @i (D, al j1 @),
N

= (D.[D.al. ")



From the two essential properties
1 (Dq,..., D) = (P, Py, ..., Ppyq) .
2. <(I>1, a<I>2, ey (I)n> — <<I>1a, Cbg, ey <I)na> = <Cb1, [D, a], (I)Q, ey (I)n> s

follows a beautiful relation between the brackets (.,...,.) and Connes’
cyclic cohomology.

Denote by
Qi (A) ={apday -+ day, : a; € A}

the universal n-forms over A. Le., Q7 .(A) = A, and

uni

§: Q" (A) — QUL (A) satisfies 62 = 0 and the Leibniz rule:

uni

d(ab) = a(db) + (da)b.



From the two essential properties
1 (Dq,..., D) = (P, Py, ..., Ppyq) .
2. <(I>1, a<I>2, ey (I)n> — <<I>1a, (bg, ey <I)na> = <(b1, [D, a], (I)Q, ey (I)n> s

follows a beautiful relation between the brackets (.,...,.) and Connes’
cyclic cohomology.

Denote by
Qi (A) ={apday -+ day, : a; € A}

the universal n-forms over A. Le., Q7 .(A) = A, and

uni

§:Qn (A) = QUEL(A) satisfies 62 = 0 and the Leibniz rule:
d(ab) = a(db) + (da)b.
We have a representation 7 : Q! .(A) — QL (A) given by

m(addb) := alD,b].



0
b‘+ b .
> P

cf.

FIGURE 1. The (b, B) bicomplex

[Connes, Academic Press '94 (IT1.1.~)]

c* o

Cyclic cohomology extends Hochschild
cohomology. It uses a bicomplex.
Even (resp. odd) cyclic cocycles are
sequences (a2, @4 ...) (resp.
(p1,¢3,...)) of linear maps

[, oQr(A) —C.

n

We define

/ agday -+ - 0ay,

n

= <a0[D,a1]7 [D,a2]a R [Daan]> .



We define
/ aodar -+ Say = (ao[D, ar], (D, asl, ... [Dyan]) |

n

and, using ¢ := W, we define
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Theorem (vN—van Suijlekom)

Let (A, H, D) be an s-summable spectral triple, and let f : R — R be
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T(f(D+®)— f(D) =3 ( /w csan-1(A) + % /¢ F(A)k) ,

k=1

where ¢ 1= % This series converges absolutely.
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Theorem (vN—van Suijlekom)

Let (A, H, D) be an s-summable spectral triple, and let f : R — R be
nice enough. For all ® = 7p(A) € O} (A)s.a:

o0

T(f(D+®)— f(D) =3 ( /w csan-1(A) + % /¢ F(A)k) ,

k=1

where ¢ 1= % This series converges absolutely.

Here, the field strength or curvature F(A) € Q2(A) of A € Q'(A) is
given by
F(A) = 6A + A2,

Example: If A = adb, then F(A) = 0adb + adbadd for a,b € A.

Another important universal form is the Chern—Simons form
1
csopa1(A) = / A(t6A 4+ t2 A% Fdt € Q2K A).
0

Examples: cs1(A) = A, cs3(A) = %A(SA + %A3, etc.
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We obtain, when ® = a[D,b] and A = adb,
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A few words on the proof. Recall that
<(I)1, CL(I)Q, ceey (Dn> — <®1a, q)g, ey <I)na> = <q)1, [D, a], q)g, ey (pn> .

We obtain, when ® = a[D,b] and A = adb,
(lp.t) = [
b1
(@[D,b,a[D,b) = | 4 +/ A5A
(a[D,b],a[D,b],a[D,bD:/ A3+/ A5AA+/ ASASA
3 4 5

etcetera.



Part 2:
‘One-1gop corrections to the
Spectral flction



We recall

L2 O
D, Oy = (Pr,..., D).
Moreover:
1
Tr(f(D+®) - f(D)) =Y —{2,...,®)
n=0
[0}
= o~ 4 lcpmm@mmcb _1_1




We wish to incorporate more Feynman diagrams, like

Py

By ®, ) 4
q)g <I)5

according to
/ ¢~ T (D) grp).
Hpn



By employing random matrix theory, we can construct Feynman
diagrams by e.g.,

Vi Vin

et o ( B =il >e—%<@@>d@.
)f;/ ‘i\ Hy v v

3
Vi Vin

The Feynman rules are derived: an edge bordering ¢ and j adds a
1 _ i —Aj .
factor ryswiks f’(/\i)fff(/\j)' Same Feynman rules as in
[Belliard—Charbonnier-Eynard-Garcia-Failde, 21]!
As such we can define all diagrams with noncommutative vertices of

arbitrary valence, their non-locality modulated by f.




Examples:

f’w,kj

ARy
T

[j? i) k] /[k77:7m7 Z]f/[jﬂ k77/]

f'13, kLT R







We let
(®1,..., 00N
be the sum of all relevant one-loop one-particle-irreducible n-point
functions, whose external edges can naturally be labeled cyclically.
The one-loop quantum effective spectral action is defined to be the
formal series -
>

n=1

1L
N'

3\'*



To note a few terms,
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To note a few terms,

1L Jﬁ%}m“ O3
(@1,..., PN = + FE S

By definition, (@1, ..., ®.)y = (P2,..., 00, B1) -

Question: does
(@1,aBs, ..., B )N —(®ra, Dy, ..., Dpa)yy = (@1, [D,al, ®s, ..., 0, )N

hold as well?

Answer: VE€S. cf. [vN-van Suijlekom, PoSiPM ’23]



For example, the contributions to {a®1, ¢2>>}VL — (@, @2@))}\% are

— e @r’\;() ( )Py [0)) 9 P 2
GWQ @Wga [D,(L] + * [g7a]
[Dé, d

and

aqflﬁ“@ <I>f%8\%a
and
@ﬁ@l @zaﬁ“@ o o,
We derive

(a1, ®2) " — (@1, ®2a)y = D,B{a(, 1, 2) ) -



As the non-analytic part of our earlier theorem only depended on the
cyclicity and commutation property of (---), we conclude that the
one-loop quantum effective spectral action takes the exact same form
as the spectral action.

Theorem (vN—van Suijlekom)

There exist cyclic cocycles (¥, ,...) and (¢, ¢}, ...) such that
for all ‘finite-dimensional’ ® = mp(A4) € QL (A)s.a.,

;::1 %({@, L BYN ~ ,;1 <ck /wﬁl cs2k—1(A) + 35 /4592 F(A)k>

We can therefore absorb all one-loop divergences into the cyclic
cocycles!



Open questions:

1.
2.

Can we do the same for higher loop?

Can we describe the renormalisation group flow of these cyclic
cocycles?

Can we replace Hy by a subspace Q5 (A)s, (modulo gauge
transformations)?

Can we treat the non-compact case (using multiple operator
integration?)?

. How to understand the difference between f Schwartz and f

polynomial? Is there still a relation to TR in the more general
case?

Help welcome!
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Can we do the same for higher loop?

Can we describe the renormalisation group flow of these cyclic
cocycles?

Can we replace Hy by a subspace Q5 (A)s, (modulo gauge
transformations)?

Can we treat the non-compact case (using multiple operator
integration?)?

. How to understand the difference between f Schwartz and f

polynomial? Is there still a relation to TR in the more general
case?

Help welcome!

Thanks for aftention :)



