One-loop renormalizability in the spectral action using cyclic cocycles

Teun van Nuland

UNSW Sydney

Based on joint work with Walter van Suijlekom:

Cyclic cocycles in the spectral action (2022) JNCG One-loop corrections of the spectral action (2022) JHEP Cyclic cocycles and one-loop corrections in the spectral action (2023) Proc. of Symp. in Pure Math.

Part 1:

Cyclic expansion of the spectral action

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of a *-algebra \mathcal{A} and a self-adjoint operator D, both acting in the same Hilbert space \mathcal{H} , such that $(D-i)^{-1}$ is compact and such that [D,a] extends to a bounded operator for all $a \in \mathcal{A}$.

Example: spectral triple associated to $M = S^1$ Algebra: $\mathcal{A} := C^{\infty}(S^1)$

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of a *-algebra \mathcal{A} and a self-adjoint operator D, both acting in the same Hilbert space \mathcal{H} , such that $(D-i)^{-1}$ is compact and such that [D,a] extends to a bounded operator for all $a \in \mathcal{A}$.

Example: spectral triple associated to $M = S^1$

Algebra: $\mathcal{A} := C^{\infty}(S^1)$

Hilbert space: $\mathcal{H} := L^2(S^1)$ with basis $\{\psi_k\}_{k \in \mathbb{Z}}$, $\psi_k(\theta) = e^{ik\theta}$.

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of a *-algebra \mathcal{A} and a self-adjoint operator D, both acting in the same Hilbert space \mathcal{H} , such that $(D-i)^{-1}$ is compact and such that [D,a] extends to a bounded operator for all $a \in \mathcal{A}$.

Example: spectral triple associated to $M = S^1$ Algebra: $\mathcal{A} := C^{\infty}(S^1)$ Hilbert space: $\mathcal{H} := L^2(S^1)$ with basis $\{\psi_k\}_{k \in \mathbb{Z}}$, $\psi_k(\theta) = e^{ik\theta}$. $\mathcal{A} \times \mathcal{H} \to \mathcal{H}$, $(g \cdot \psi)(\theta) := g(\theta)\psi(\theta)$.

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of a *-algebra \mathcal{A} and a self-adjoint operator D, both acting in the same Hilbert space \mathcal{H} , such that $(D-i)^{-1}$ is compact and such that [D,a] extends to a bounded operator for all $a \in \mathcal{A}$.

Example: spectral triple associated to $M = S^1$ Algebra: $\mathcal{A} := C^{\infty}(S^1)$ Hilbert space: $\mathcal{H} := L^2(S^1)$ with basis $\{\psi_k\}_{k \in \mathbb{Z}}$, $\psi_k(\theta) = e^{ik\theta}$. $\mathcal{A} \times \mathcal{H} \to \mathcal{H}$, $(g \cdot \psi)(\theta) := g(\theta)\psi(\theta)$. Dirac operator: $D := -i\frac{d}{d\theta}$,

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of a *-algebra \mathcal{A} and a self-adjoint operator D, both acting in the same Hilbert space \mathcal{H} , such that $(D-i)^{-1}$ is compact and such that [D,a] extends to a bounded operator for all $a \in \mathcal{A}$.

Example: spectral triple associated to $M = S^1$

Algebra: $\mathcal{A} := C^{\infty}(S^1)$

Hilbert space: $\mathcal{H} := L^2(S^1)$ with basis $\{\psi_k\}_{k \in \mathbb{Z}}$, $\psi_k(\theta) = e^{ik\theta}$.

 $A \times H \to H$, $(g \cdot \psi)(\theta) := g(\theta)\psi(\theta)$.

Dirac operator: $D:=-i\frac{d}{d\theta},\,D\psi_k=k\psi_k$

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of a *-algebra \mathcal{A} and a self-adjoint operator D, both acting in the same Hilbert space \mathcal{H} , such that $(D-i)^{-1}$ is compact and such that [D,a] extends to a bounded operator for all $a \in \mathcal{A}$.

Example: spectral triple associated to $M = S^1$

Algebra: $\mathcal{A} := C^{\infty}(S^1)$

Hilbert space: $\mathcal{H} := L^2(S^1)$ with basis $\{\psi_k\}_{k \in \mathbb{Z}}, \psi_k(\theta) = e^{ik\theta}$.

 $A \times H \to H$, $(g \cdot \psi)(\theta) := g(\theta)\psi(\theta)$.

Dirac operator: $D := -i\frac{d}{d\theta}$, $D\psi_k = k\psi_k$

$$[D, a]\psi = D(a \cdot \psi) - a \cdot D(\psi) = (-i)\frac{d}{d\theta}(a \cdot \psi) - (-i)a\frac{d}{d\theta}\psi = (-i)\frac{da}{d\theta}\psi$$

$$[D,a]=-i\frac{da}{d\theta}$$

For more general commutative spectral triples, D encodes the metric structure of M, and [D, a] is related to the first derivatives of a.

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of a *-algebra \mathcal{A} and a self-adjoint operator D, both acting in the same Hilbert space \mathcal{H} , such that $(D-i)^{-1}$ is compact and such that [D,a] extends to a bounded operator for all $a \in \mathcal{A}$.

Example: spectral triple associated to $M = S^1$

Algebra: $\mathcal{A} := C^{\infty}(S^1)$

Hilbert space: $\mathcal{H} := L^2(S^1)$ with basis $\{\psi_k\}_{k \in \mathbb{Z}}, \psi_k(\theta) = e^{ik\theta}$.

 $A \times H \to H$, $(g \cdot \psi)(\theta) := g(\theta)\psi(\theta)$.

Dirac operator: $D := -i\frac{d}{d\theta}$, $D\psi_k = k\psi_k$

$$[D, a]\psi = D(a \cdot \psi) - a \cdot D(\psi) = (-i)\frac{d}{d\theta}(a \cdot \psi) - (-i)a\frac{d}{d\theta}\psi = (-i)\frac{da}{d\theta}\psi$$

$$[D,a] = -i\frac{da}{d\theta}$$

For more general commutative spectral triples, D encodes the metric structure of M, and [D, a] is related to the first derivatives of a.

Other examples: Riemannian spin manifolds, Moyal plane

Over a manifold M, gauge fields are Lie-algebra-valued one-forms:

$$A = \sum_{k} a_k db_k \in \Omega^1_{dR}(M; \mathfrak{g})$$

for functions $a_k, b_k \in C^{\infty}(M; \mathfrak{g})$. Over a noncommutative space, gauge fields are self-adjoint elements of

$$\Omega_D^1(\mathcal{A}) := \left\{ \sum_k a_k[D, b_k] : a_k, b_k \in \mathcal{A} \right\} \subseteq \mathcal{B}(\mathcal{H}).$$

$$S[\Phi] = Tr(f(D + \Phi)).$$

$$S[\Phi] = Tr(f(D + \Phi)).$$

If $\Phi = \sum a_j[D, b_j] \in \Omega^1_D(\mathcal{A})_{\text{s.a.}}$, then $(\mathcal{A}, \mathcal{H}, D + \Phi)$ is again a spectral triple.

$$S[\Phi] = Tr(f(D + \Phi)).$$

If $\Phi = \sum a_j[D, b_j] \in \Omega^1_D(\mathcal{A})_{\text{s.a.}}$, then $(\mathcal{A}, \mathcal{H}, D + \Phi)$ is again a spectral triple.

For the right choice of $(\mathcal{A}, \mathcal{H}, D) = (C^{\infty}(M) \otimes F, \mathcal{H}, D_{M \times F}),$

 $\operatorname{Tr}(f(D+\Phi))$ produces the full (bosonic part of the) standard model

$$S[\Phi] = Tr(f(D + \Phi)).$$

If $\Phi = \sum a_j[D, b_j] \in \Omega^1_D(\mathcal{A})_{\text{s.a.}}$, then $(\mathcal{A}, \mathcal{H}, D + \Phi)$ is again a spectral triple.

For the right choice of $(A, \mathcal{H}, D) = (C^{\infty}(M) \otimes F, \mathcal{H}, D_{M \times F})$, $Tr(f(D + \Phi))$ produces the full (bosonic part of the) standard model

$$\operatorname{Tr}\left(f\Big(\frac{D_{M\times F}+\Phi}{\Lambda}\Big)\right)\sim c_0\Lambda^4\mathrm{vol}(M)+c_1\Lambda^2\int R\sqrt{g}dx+c_2\int \mathrm{tr} F_{\mu\nu}F^{\mu\nu}$$
 standard Model of Elementary Particles
$$-c_3\int |\phi|^2+c_4\int |\phi|^4+\cdots$$

$$S[\Phi] = \text{Tr}(f(D + \Phi)).$$

If $\Phi = \sum a_j[D, b_j] \in \Omega^1_D(\mathcal{A})_{\text{s.a.}}$, then $(\mathcal{A}, \mathcal{H}, D + \Phi)$ is again a spectral triple.

For the right choice of $(A, \mathcal{H}, D) = (C^{\infty}(M) \otimes F, \mathcal{H}, D_{M \times F}),$

non-spectral

 $Tr(f(D+\Phi))$ produces the full (bosonic part of the) standard model

 $\log_{10}(\mu/\text{GeV})$ Renormalization Group flow, cf.

[van Suijlekom-Chamseddine-Connes, JHEP]

$$S[\Phi] - S[0] = \sum_{n=1}^{\infty} \frac{d^n}{dt^n} \operatorname{Tr}(f(D + t\Phi))\big|_{t=0}$$

$$S[\Phi] - S[0] = \sum_{n=1}^{\infty} \frac{d^n}{dt^n} \operatorname{Tr}(f(D + t\Phi))\big|_{t=0}$$

For instance, if $f(x) = x^4$:

$$\frac{d}{dt}\operatorname{Tr}((D+t\Phi)^4)\big|_{t=0}=\operatorname{Tr}(4D^3\Phi)$$

$$S[\Phi] - S[0] = \sum_{n=1}^{\infty} \frac{d^n}{dt^n} \operatorname{Tr}(f(D + t\Phi))\big|_{t=0}$$

For instance, if $f(x) = x^4$:

$$\frac{d}{dt}\operatorname{Tr}((D+t\Phi)^4)\big|_{t=0}=\operatorname{Tr}(4D^3\Phi)$$

More generally:

$$\frac{d}{dt}\operatorname{Tr}(f(D+t\Phi))\big|_{t=0} = \operatorname{Tr}(f'(D)\Phi)$$

$$S[\Phi] - S[0] = \sum_{n=1}^{\infty} \frac{d^n}{dt^n} \operatorname{Tr}(f(D + t\Phi))\big|_{t=0}$$

For instance, if $f(x) = x^4$:

$$\frac{d}{dt}\operatorname{Tr}((D+t\Phi)^4)\big|_{t=0} = \operatorname{Tr}(4D^3\Phi)$$

More generally:

$$\frac{d}{dt}\operatorname{Tr}(f(D+t\Phi))\big|_{t=0} = \operatorname{Tr}(f'(D)\Phi)$$

If
$$f(x) = x^4$$
:

$$\frac{d^2}{dt^2} \operatorname{Tr}((D + t\Phi)^4) \Big|_{t=0} = \operatorname{Tr}(16\Phi^2 D^2 + 8\Phi D\Phi D)$$

$$S[\Phi] - S[0] = \sum_{n=0}^{\infty} \frac{d^n}{dt^n} \operatorname{Tr}(f(D + t\Phi)) \Big|_{t=0}$$

For instance, if $f(x) = x^4$:

$$\frac{d}{dt}\operatorname{Tr}((D+t\Phi)^4)\big|_{t=0} = \operatorname{Tr}(4D^3\Phi)$$

More generally:

$$\frac{d}{dt}\operatorname{Tr}(f(D+t\Phi))\big|_{t=0} = \operatorname{Tr}(f'(D)\Phi)$$

If $f(x) = x^4$: d^2

$$\frac{d^2}{dt^2} \operatorname{Tr}((D + t\Phi)^4) \big|_{t=0} = \operatorname{Tr}(16\Phi^2 D^2 + 8\Phi D\Phi D)$$

 at^2

More generally:
$$\frac{1}{n!} \frac{d^n}{dt^n} \operatorname{Tr}(f(D+t\Phi))|_{t=0} = \frac{1}{n} \sum_{i_1,\dots,i_n} f'[\lambda_{i_1},\dots,\lambda_{i_n}] \Phi_{i_1,i_2} \cdots \Phi_{i_{n-1},i_n} \Phi_{i_n,i_1}$$

where $f'[\lambda, \mu] = \frac{f'(\lambda) - f'(\mu)}{\lambda - \mu}$, $f'[\lambda, \mu, \nu] = \frac{f'[\lambda, \mu] - f'[\lambda, \nu]}{\mu - \nu}$, etc. are the divided differences of f', $\{\psi_1, \psi_2, \ldots\}$ is an eigenbasis of D with

Let $\{\psi_1, \psi_2, \ldots\}$ be an eigenbasis of D with eigenvalues $\{\lambda_1, \lambda_2, \ldots\}$. Write $\Phi_{ij} = \langle \psi_i | \Phi \psi_i \rangle$. Define

$$\begin{array}{ccc}
\Phi_2 & \Phi_3 \\
\Phi_1 & & & \\
\Phi_1 & & & \\
& & & \\
\Phi_n & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& &$$

We summarize:

$$S[\Phi] - S[0] = \sum_{n=0}^{\infty} \frac{1}{n} \langle \Phi, \dots, \Phi \rangle$$

$$= \Phi \longrightarrow \Phi + \frac{1}{2} \Phi \longrightarrow \Phi + \frac{1}{3} \Phi + \dots$$

$$= \sum_{n=1}^{\infty} \frac{1}{n} \sum_{i_1, \dots, i_n} f'[\lambda_{i_1}, \dots, \lambda_{i_n}] \Phi_{i_1, i_2} \cdots \Phi_{i_{n-1}, i_n} \Phi_{i_n, i_1}$$

$$\langle \Phi_1, \dots, \Phi_n \rangle = \langle \Phi_n, \Phi_1, \dots, \Phi_{n-1} \rangle$$

$$\langle \Phi_1, \dots, \Phi_n \rangle = \langle \Phi_n, \Phi_1, \dots, \Phi_{n-1} \rangle$$

$$\langle \Phi_1, a\Phi_2, \dots, \Phi_n \rangle - \langle \Phi_1 a, \Phi_2, \dots, \Phi_n \rangle = \langle \Phi_1, [D, a], \Phi_2, \dots, \Phi_n \rangle$$

$$\langle \Phi_1, \dots, \Phi_n \rangle = \langle \Phi_n, \Phi_1, \dots, \Phi_{n-1} \rangle$$

$$\langle \Phi_1, a\Phi_2, \dots, \Phi_n \rangle - \langle \Phi_1 a, \Phi_2, \dots, \Phi_n \rangle = \langle \Phi_1, [D, a], \Phi_2, \dots, \Phi_n \rangle$$

$$\langle \Phi_1, \dots, \Phi_n \rangle = \langle \Phi_n, \Phi_1, \dots, \Phi_{n-1} \rangle$$

$$\langle \Phi_1, a\Phi_2, \dots, \Phi_n \rangle - \langle \Phi_1 a, \Phi_2, \dots, \Phi_n \rangle = \langle \Phi_1, [D, a], \Phi_2, \dots, \Phi_n \rangle$$

$$\langle \Phi, a\Phi' \rangle - \langle \Phi a, \Phi' \rangle = \sum_{i,j,k} f'[\lambda_i, \lambda_j] (\Phi_{ij} a_{jk} \Phi'_{ki} - \Phi_{ik} a_{kj} \Phi'_{ji})$$

$$\langle \Phi_1, \dots, \Phi_n \rangle = \langle \Phi_n, \Phi_1, \dots, \Phi_{n-1} \rangle$$

$$\langle \Phi_1, a\Phi_2, \dots, \Phi_n \rangle - \langle \Phi_1 a, \Phi_2, \dots, \Phi_n \rangle = \langle \Phi_1, [D, a], \Phi_2, \dots, \Phi_n \rangle$$

$$\Phi_{1} \qquad \Phi_{1} \qquad \Phi_{1} \qquad [D, a]$$

$$\Phi_{2} \qquad \Phi_{2} \qquad \Phi_{3} \qquad \Phi_{3}$$

$$\langle \Phi, a\Phi' \rangle - \langle \Phi a, \Phi' \rangle = \sum_{i,j,k} f'[\lambda_{i}, \lambda_{j}](\Phi_{ij} a_{jk} \Phi'_{ki} - \Phi_{ik} a_{kj} \Phi'_{ji})$$

$$= \sum_{i,j,k} (f'[\lambda_{i}, \lambda_{j},] - f'[\lambda_{i}, \lambda_{k}]) \Phi_{ij} a_{jk} \Phi'_{ki}$$

$$\langle \Phi_1, \dots, \Phi_n \rangle = \langle \Phi_n, \Phi_1, \dots, \Phi_{n-1} \rangle$$

$$\langle \Phi_1, a\Phi_2, \dots, \Phi_n \rangle - \langle \Phi_1 a, \Phi_2, \dots, \Phi_n \rangle = \langle \Phi_1, [D, a], \Phi_2, \dots, \Phi_n \rangle$$

$$\Phi_1$$
 Φ_1a
 Φ_1a
 Φ_1
 Φ_2
 Φ_3
 Φ_2
 Φ_3
 Φ_3
 Φ_4
 Φ_5
 Φ_5
 Φ_5
 Φ_5
 Φ_5
 Φ_5
 Φ_6
 Φ_7
 Φ_8
 Φ_9
 $\Phi_$

$$\langle \Phi_1, \dots, \Phi_n \rangle = \langle \Phi_n, \Phi_1, \dots, \Phi_{n-1} \rangle$$

$$\langle \Phi_1, a\Phi_2, \dots, \Phi_n \rangle - \langle \Phi_1 a, \Phi_2, \dots, \Phi_n \rangle = \langle \Phi_1, [D, a], \Phi_2, \dots, \Phi_n \rangle$$

$$\Phi_{1} \qquad \Phi_{1} \qquad \Phi_{1} \qquad [D, a]$$

$$\Phi_{3} \qquad \Phi_{2} \qquad \Phi_{3} \qquad \Phi_{3}$$

$$\langle \Phi, a\Phi' \rangle - \langle \Phi a, \Phi' \rangle = \sum_{i,j,k} f'[\lambda_{i}, \lambda_{j}](\Phi_{ij}a_{jk}\Phi'_{ki} - \Phi_{ik}a_{kj}\Phi'_{ji})$$

$$= \sum_{i,j,k} (f'[\lambda_{i}, \lambda_{j},] - f'[\lambda_{i}, \lambda_{k}])\Phi_{ij}a_{jk}\Phi'_{ki}$$

$$= \sum_{i,j,k} f'[\lambda_{i}, \lambda_{j}, \lambda_{k}](\lambda_{j} - \lambda_{k})\Phi_{ij}a_{jk}\Phi'_{ki}$$

$$= \sum_{i,j,k} f'[\lambda_{i}, \lambda_{j}, \lambda_{k}]\Phi_{ij}[D, a]_{jk}\Phi'_{ki}$$

$$\langle \Phi_1, \dots, \Phi_n \rangle = \langle \Phi_n, \Phi_1, \dots, \Phi_{n-1} \rangle$$

$$\langle \Phi_1, a\Phi_2, \dots, \Phi_n \rangle - \langle \Phi_1 a, \Phi_2, \dots, \Phi_n \rangle = \langle \Phi_1, [D, a], \Phi_2, \dots, \Phi_n \rangle$$

$$\Phi_{1} \qquad \Phi_{1} \qquad \Phi_{1} \qquad \Phi_{1} \qquad [D, a]$$

$$\Phi_{3} \qquad \Phi_{2} \qquad \Phi_{2} \qquad \Phi_{2}$$

$$\Phi_{3} \qquad \Phi_{3} \qquad \Phi_{3} \qquad \Phi_{3}$$

$$\langle \Phi, a\Phi' \rangle - \langle \Phi a, \Phi' \rangle = \sum_{i,j,k} f'[\lambda_{i}, \lambda_{j}] (\Phi_{ij} a_{jk} \Phi'_{ki} - \Phi_{ik} a_{kj} \Phi'_{ji})$$

$$= \sum_{i,j,k} (f'[\lambda_{i}, \lambda_{j},] - f'[\lambda_{i}, \lambda_{k}]) \Phi_{ij} a_{jk} \Phi'_{ki}$$

$$= \sum_{i,j,k} f'[\lambda_{i}, \lambda_{j}, \lambda_{k}] (\lambda_{j} - \lambda_{k}) \Phi_{ij} a_{jk} \Phi'_{ki}$$

$$= \sum_{i,j,k} f'[\lambda_{i}, \lambda_{j}, \lambda_{k}] \Phi_{ij} [D, a]_{jk} \Phi'_{ki}$$

$$= \langle \Phi, [D, a], \Phi' \rangle$$

From the two essential properties

- 1. $\langle \Phi_1, \dots, \Phi_n \rangle = \langle \Phi_n, \Phi_1, \dots, \Phi_{n-1} \rangle$.
- 2. $\langle \Phi_1, a\Phi_2, \dots, \Phi_n \rangle \langle \Phi_1 a, \Phi_2, \dots, \Phi_n a \rangle = \langle \Phi_1, [D, a], \Phi_2, \dots, \Phi_n \rangle$, follows a beautiful relation between the brackets $\langle ., \dots, . \rangle$ and Connes' cyclic cohomology.

Denote by

$$\Omega_{\mathrm{uni}}^n(\mathcal{A}) = \{a_0 \delta a_1 \cdots \delta a_n : a_i \in \mathcal{A}\}$$

the universal *n*-forms over \mathcal{A} . I.e., $\Omega_{\mathrm{uni}}^0(\mathcal{A}) = \mathcal{A}$, and $\delta: \Omega_{\mathrm{uni}}^n(\mathcal{A}) \to \Omega_{\mathrm{uni}}^{n+1}(\mathcal{A})$ satisfies $\delta^2 = 0$ and the Leibniz rule:

$$\delta(ab) = a(\delta b) + (\delta a)b.$$

From the two essential properties

- 1. $\langle \Phi_1, \dots, \Phi_n \rangle = \langle \Phi_n, \Phi_1, \dots, \Phi_{n-1} \rangle$.
- 2. $\langle \Phi_1, a\Phi_2, \dots, \Phi_n \rangle \langle \Phi_1 a, \Phi_2, \dots, \Phi_n a \rangle = \langle \Phi_1, [D, a], \Phi_2, \dots, \Phi_n \rangle$, follows a beautiful relation between the brackets $\langle ., \dots, . \rangle$ and Connes' cyclic cohomology.

Denote by

$$\Omega_{\text{uni}}^n(\mathcal{A}) = \{a_0 \delta a_1 \cdots \delta a_n : a_i \in \mathcal{A}\}$$

the universal *n*-forms over \mathcal{A} . I.e., $\Omega_{\mathrm{uni}}^0(\mathcal{A}) = \mathcal{A}$, and $\delta: \Omega_{\mathrm{uni}}^n(\mathcal{A}) \to \Omega_{\mathrm{uni}}^{n+1}(\mathcal{A})$ satisfies $\delta^2 = 0$ and the Leibniz rule:

$$\delta(ab) = a(\delta b) + (\delta a)b.$$

We have a representation $\pi: \Omega^1_{\mathrm{uni}}(\mathcal{A}) \to \Omega^1_D(\mathcal{A})$ given by

$$\pi(a\delta b) := a[D, b].$$

Figure 1. The (b, B) bicomplex

cf. [Connes, Academic Press '94 (III.1. $\gamma)]$

Cyclic cohomology extends Hochschild cohomology. It uses a bicomplex. Even (resp. odd) cyclic cocycles are sequences $(\varphi_2, \varphi_4 \dots)$ (resp. $(\varphi_1, \varphi_3, \dots)$) of linear maps $\int_{\varphi_n} : \Omega^n_{\text{uni}}(\mathcal{A}) \to \mathbb{C}$.

We define

$$\int_{\phi_n} a_0 \delta a_1 \cdots \delta a_n$$
:= $\langle a_0[D, a_1], [D, a_2], \dots, [D, a_n] \rangle$.

We define

$$\int_{\phi_n} a_0 \delta a_1 \cdots \delta a_n := \langle a_0[D, a_1], [D, a_2], \dots, [D, a_n] \rangle,$$

and, using $c_k := \frac{(-1)^{k-1}(k-1)!}{(2k-1)!}$, we define

$$\int_{\psi_{2k-1}} \omega := c_k \left(\int_{\phi_{2k-1}} \omega - \frac{1}{2} \int_{\phi_{2k}} \delta \omega \right).$$

Using the two essential properties of $\langle ., ..., . \rangle$:

- 1. $\langle \Phi_1, \dots, \Phi_n \rangle = \langle \Phi_n, \Phi_1, \dots, \Phi_{n-1} \rangle$.
- 2. $\langle \Phi_1, a\Phi_2, \dots, \Phi_n \rangle \langle \Phi_1 a, \Phi_2, \dots, \Phi_n a \rangle = \langle \Phi_1, [D, a], \Phi_2, \dots, \Phi_n \rangle$, it follows that (ϕ_2, ϕ_4, \dots) and (ψ_1, ψ_3, \dots) form cyclic cocycles.

We define

$$\int_{\phi_n} a_0 \delta a_1 \cdots \delta a_n := \langle a_0[D, a_1], [D, a_2], \dots, [D, a_n] \rangle,$$

and, using $c_k := \frac{(-1)^{k-1}(k-1)!}{(2k-1)!}$, we define

$$\int_{\psi_{2k-1}} \omega := c_k \left(\int_{\phi_{2k-1}} \omega - \frac{1}{2} \int_{\phi_{2k}} \delta \omega \right).$$

Using the two essential properties of $\langle ., ..., . \rangle$:

- 1. $\langle \Phi_1, \dots, \Phi_n \rangle = \langle \Phi_n, \Phi_1, \dots, \Phi_{n-1} \rangle$.
- 2. $\langle \Phi_1, a\Phi_2, \dots, \Phi_n \rangle \langle \Phi_1 a, \Phi_2, \dots, \Phi_n a \rangle = \langle \Phi_1, [D, a], \Phi_2, \dots, \Phi_n \rangle$, it follows that (ϕ_2, ϕ_4, \dots) and (ψ_1, ψ_3, \dots) form cyclic cocycles.

Theorem (vN-van Suijlekom)

Let $(\mathcal{A}, \mathcal{H}, D)$ be an s-summable spectral triple, and let $f : \mathbb{R} \to \mathbb{R}$ be nice enough. For all $\Phi = \pi_D(A) \in \Omega^1_D(\mathcal{A})_{\text{s.a.}}$:

$$Tr(f(D+\Phi)-f(D)) = \sum_{k=1}^{\infty} \left(c_k \int_{\psi_{2k-1}} cs_{2k-1}(A) + \frac{1}{2k} \int_{\phi_{2k}} F(A)^k \right),$$

where $c_k := \frac{(2k-1)!}{(-1)^{k-1}(k-1)!}$. This series converges absolutely.

Theorem (vN-van Suijlekom)

Let $(\mathcal{A}, \mathcal{H}, D)$ be an s-summable spectral triple, and let $f : \mathbb{R} \to \mathbb{R}$ be nice enough. For all $\Phi = \pi_D(A) \in \Omega^1_D(\mathcal{A})_{\text{s.a.}}$:

$$Tr(f(D+\Phi)-f(D)) = \sum_{k=1}^{\infty} \left(c_k \int_{\psi_{2k-1}} cs_{2k-1}(A) + \frac{1}{2k} \int_{\phi_{2k}} F(A)^k \right),$$

where $c_k := \frac{(2k-1)!}{(-1)^{k-1}(k-1)!}$. This series converges absolutely.

Here, the field strength or curvature $F(A) \in \Omega^2(\mathcal{A})$ of $A \in \Omega^1(\mathcal{A})$ is given by

$$F(A) := \delta A + A^2$$
.

Example: If $A = a\delta b$, then $F(A) = \delta a\delta b + a\delta b \, a\delta b$ for $a, b \in \mathcal{A}$.

Theorem (vN-van Suijlekom)

Let $(\mathcal{A}, \mathcal{H}, D)$ be an s-summable spectral triple, and let $f : \mathbb{R} \to \mathbb{R}$ be nice enough. For all $\Phi = \pi_D(A) \in \Omega^1_D(\mathcal{A})_{s.a.}$:

$$\operatorname{Tr}(f(D+\Phi)-f(D)) = \sum_{k=1}^{\infty} \left(c_k \int_{\psi_{2k-1}} \operatorname{cs}_{2k-1}(A) + \frac{1}{2k} \int_{\phi_{2k}} F(A)^k \right),$$

where $c_k := \frac{(2k-1)!}{(-1)^{k-1}(k-1)!}$. This series converges absolutely.

Here, the field strength or curvature $F(A) \in \Omega^2(\mathcal{A})$ of $A \in \Omega^1(\mathcal{A})$ is given by

$$F(A) := \delta A + A^2$$
.

Example: If $A = a\delta b$, then $F(A) = \delta a\delta b + a\delta b \, a\delta b$ for $a, b \in \mathcal{A}$.

Another important universal form is the Chern-Simons form

$$cs_{2k+1}(A) := \int_0^1 A(t\delta A + t^2 A^2)^k dt \in \Omega^{2k+1}(A).$$

Examples:
$$cs_1(A) = A$$
, $cs_3(A) = \frac{1}{2}A\delta A + \frac{1}{3}A^3$, etc.

$$\langle \Phi_1, a\Phi_2, \dots, \Phi_n \rangle - \langle \Phi_1 a, \Phi_2, \dots, \Phi_n a \rangle = \langle \Phi_1, [D, a], \Phi_2, \dots, \Phi_n \rangle.$$

$$\langle \Phi_1, a\Phi_2, \dots, \Phi_n \rangle - \langle \Phi_1 a, \Phi_2, \dots, \Phi_n a \rangle = \langle \Phi_1, [D, a], \Phi_2, \dots, \Phi_n \rangle.$$

We obtain, when $\Phi = a[D, b]$ and $A = a\delta b$,

$$\langle a[D,b]\rangle = \int_{\phi_1} A$$

$$\langle \Phi_1, a\Phi_2, \dots, \Phi_n \rangle - \langle \Phi_1 a, \Phi_2, \dots, \Phi_n a \rangle = \langle \Phi_1, [D, a], \Phi_2, \dots, \Phi_n \rangle.$$

We obtain, when $\Phi = a[D, b]$ and $A = a\delta b$,

$$\langle a[D,b]\rangle = \int_{\phi_1} A$$

$$\langle a[D,b],a[D,b]\rangle = \int_{\phi_2} A^2 + \int_{\phi_3} A\delta A$$

$$\langle \Phi_1, a\Phi_2, \dots, \Phi_n \rangle - \langle \Phi_1 a, \Phi_2, \dots, \Phi_n a \rangle = \langle \Phi_1, [D, a], \Phi_2, \dots, \Phi_n \rangle.$$

We obtain, when $\Phi = a[D, b]$ and $A = a\delta b$,

$$\langle a[D,b]\rangle = \int_{\phi_1} A$$

$$\langle a[D,b], a[D,b]\rangle = \int_{\phi_2} A^2 + \int_{\phi_3} A\delta A$$

$$\langle a[D,b], a[D,b], a[D,b]\rangle = \int_{\phi_3} A^3 + \int_{\phi_4} A\delta AA + \int_{\phi_5} A\delta A\delta A$$

etcetera.

Part 2:

One-Loop corrections to the Spectral Action

We recall

Moreover:

$$\operatorname{Tr}(f(D+\Phi)-f(D)) = \sum_{n=0}^{\infty} \frac{1}{n} \langle \Phi, \dots, \Phi \rangle$$

$$= \Phi \longrightarrow + \frac{1}{2} \Phi \longrightarrow \Phi + \frac{1}{3} \longrightarrow + \dots$$

We wish to incorporate more Feynman diagrams, like

$$\int_{H_N} e^{-\operatorname{Tr}(f(D+\Phi))} d[\Phi].$$

By employing random matrix theory, we can construct Feynman diagrams by e.g.,

$$\begin{pmatrix} V_n \\ \vdots \\ G_1 \end{pmatrix} = \frac{-1}{Z[0]} \int_{H_N} \left(\begin{pmatrix} V_n \\ \vdots \\ V_l \end{pmatrix} \right) e^{-\frac{1}{2} \langle Q, Q \rangle} dQ.$$

The Feynman rules are derived: an edge bordering i and j adds a factor $\frac{1}{f'[\lambda_i,\lambda_j]} = \frac{\lambda_i - \lambda_j}{f'(\lambda_i) - f'(\lambda_j)}$. Same Feynman rules as in [Belliard–Charbonnier–Eynard–Garcia-Failde, '21]!

As such we can define all diagrams with noncommutative vertices of arbitrary valence, their non-locality modulated by f.

Examples:

$$E_{ij} \stackrel{\text{index}}{=} \sum_{k=1}^{N} \frac{f'[i,j,k,j]}{f'[j,k]}$$

$$E_{ii}$$
 E_{ij} E_{jj} E_{jj} E_{ij}

$$E_{ji} = \sum_{k,m=1}^{j} \frac{f'[j,i,k]f'[k,i,m,i]f'[j,k,i]}{f'[j,k]f'[i,k]^2}$$

We let

$$\langle\!\langle \Phi_1, \dots, \Phi_n \rangle\!\rangle_N^{1L}$$

be the sum of all relevant one-loop one-particle-irreducible n-point functions, whose external edges can naturally be labeled cyclically. The one-loop quantum effective spectral action is defined to be the formal series

$$\sum_{n=1}^{\infty} \frac{1}{n} \langle \! \langle \Phi, \dots, \Phi \rangle \! \rangle_N^{1L}.$$

By definition, $\langle \langle \Phi_1, \dots, \Phi_n \rangle \rangle_N^{1L} = \langle \langle \Phi_2, \dots, \Phi_n, \Phi_1 \rangle \rangle_N^{1L}$.

By definition, $\langle \langle \Phi_1, \dots, \Phi_n \rangle \rangle_N^{1L} = \langle \langle \Phi_2, \dots, \Phi_n, \Phi_1 \rangle \rangle_N^{1L}$.

Question: does

$$\langle\!\langle \Phi_1, a\Phi_2, \dots, \Phi_n \rangle\!\rangle_N^{1L} - \langle\!\langle \Phi_1 a, \Phi_2, \dots, \Phi_n a \rangle\!\rangle_N^{1L} = \langle\!\langle \Phi_1, [D, a], \Phi_2, \dots, \Phi_n \rangle\!\rangle_N^{1L}$$

hold as well?

$$\langle\!\langle \Phi_1, \dots, \Phi_n \rangle\!\rangle_N^{1L} = \Phi_n \qquad \Phi_1 \qquad \Phi_1 \qquad \Phi_2 \qquad \Phi_3 \qquad + \dots$$

By definition, $\langle \langle \Phi_1, \dots, \Phi_n \rangle \rangle_N^{1L} = \langle \langle \Phi_2, \dots, \Phi_n, \Phi_1 \rangle \rangle_N^{1L}$.

Question: does

$$\langle\!\langle \Phi_1, a\Phi_2, \dots, \Phi_n \rangle\!\rangle_N^{1L} - \langle\!\langle \Phi_1 a, \Phi_2, \dots, \Phi_n a \rangle\!\rangle_N^{1L} = \langle\!\langle \Phi_1, [D, a], \Phi_2, \dots, \Phi_n \rangle\!\rangle_N^{1L}$$

hold as well?

Answer: yes.

By definition, $\langle \langle \Phi_1, \dots, \Phi_n \rangle \rangle_N^{1L} = \langle \langle \Phi_2, \dots, \Phi_n, \Phi_1 \rangle \rangle_N^{1L}$.

Question: does

$$\langle\!\langle \Phi_1, a\Phi_2, \dots, \Phi_n \rangle\!\rangle_N^{1L} - \langle\!\langle \Phi_1 a, \Phi_2, \dots, \Phi_n a \rangle\!\rangle_N^{1L} = \langle\!\langle \Phi_1, [D, a], \Phi_2, \dots, \Phi_n \rangle\!\rangle_N^{1L}$$

hold as well?

Answer: yes. cf. [vN-van Suijlekom, PoSiPM '23]

For example, the contributions to $\langle \langle a\Phi_1, \Phi_2 \rangle \rangle_N^{1L} - \langle \langle \Phi_1, \Phi_2 a \rangle \rangle_N^{1L}$ are

$$a\Phi_{1} \bullet \Phi_{2} - \Phi_{1} \bullet \Phi_{2} = \Phi_{1} \bullet \Phi_{2} + \Phi_{2} \bullet \Phi_{2} + \Phi_{1} \bullet \Phi_{2} + \Phi_{2} \bullet \Phi_{2} + \Phi_{2} \bullet \Phi_{2} + \Phi_{3} \bullet \Phi_{2} + \Phi_{4} \bullet \Phi_{2} \bullet \Phi_{3} + \Phi_{5} \bullet \Phi_{4} \bullet \Phi_{2} + \Phi_{5} \bullet \Phi_{2} \bullet \Phi_{3} + \Phi_{5} \bullet \Phi_{4} \bullet \Phi_{5} \bullet \Phi_{5} + \Phi_{5} \bullet \Phi_{$$

and

and

$$\Phi_{2} = \Phi_{1} + \Phi_{2} + \Phi_{1} + \Phi_{1} + \Phi_{2} + \Phi_{2$$

We derive

$$\langle \langle a\Phi_1, \Phi_2 \rangle \rangle_N^{1L} - \langle \langle \Phi_1, \Phi_2 a \rangle \rangle_N^{1L} = D, D \langle a \langle, \Phi_1, \Phi_2 \rangle \rangle_N^{1L}.$$

As the non-analytic part of our earlier theorem only depended on the cyclicity and commutation property of $\langle \cdots \rangle$, we conclude that the one-loop quantum effective spectral action takes the exact same form as the spectral action.

Theorem (vN-van Suijlekom)

There exist cyclic cocycles $(\psi_1^N, \psi_3^N, \ldots)$ and $(\phi_2^N, \phi_4^N, \ldots)$ such that for all 'finite-dimensional' $\Phi = \pi_D(A) \in \Omega^1_D(\mathcal{A})_{\mathrm{s.a.}}$,

$$\sum_{n=1}^{\infty} \frac{1}{n} \langle\!\langle \Phi, \dots, \Phi \rangle\!\rangle_{N}^{1L} \sim \sum_{k=1}^{\infty} \left(c_{k} \int_{\psi_{2k-1}^{N}} \operatorname{cs}_{2k-1}(A) + \frac{1}{2k} \int_{\phi_{2k}^{N}} F(A)^{k} \right).$$

We can therefore absorb all one-loop divergences into the cyclic cocycles!

Open questions:

- 1. Can we do the same for higher loop?
- 2. Can we describe the renormalisation group flow of these cyclic cocycles?
- 3. Can we replace H_N by a subspace $\Omega_D^1(\mathcal{A})_{sa}$ (modulo gauge transformations)?
- 4. Can we treat the non-compact case (using multiple operator integration?)?
- 5. How to understand the difference between f Schwartz and f polynomial? Is there still a relation to TR in the more general case?

Help welcome!

Open questions:

- 1. Can we do the same for higher loop?
- 2. Can we describe the renormalisation group flow of these cyclic cocycles?
- 3. Can we replace H_N by a subspace $\Omega_D^1(\mathcal{A})_{sa}$ (modulo gauge transformations)?
- 4. Can we treat the non-compact case (using multiple operator integration?)?
- 5. How to understand the difference between f Schwartz and f polynomial? Is there still a relation to TR in the more general case?

Help welcome!

Thanks for attention:)